
PROGRAMMING,  
DATA STRUCTURES AND
ALGORITHMS IN PYTHON

Madhavan Mukund, Chennai Mathematical Institute
http://www.cmi.ac.in/~madhavan

Week 4, Lecture 2

NPTEL MOOC

http://www.cmi.ac.in/~madhavan

Merge sorted lists

Given two sorted lists A and B, combine into a
sorted list C

Compare first element of A and B

Move it into C

Repeat until all elements in A and B are over

Merging A and B

Analysis of Merge
How much time does Merge take?

Merge A of size m, B of size n into C

In each iteration, we add one element to C

Size of C is m+n

m+n ≤ 2 max(m,n)

Hence O(max(m,n)) = O(n) if m ≈ n

Merge Sort
To sort A[0:n] into B[0:n]

If n is 1, nothing to be done

Otherwise

Sort A[0:n//2] into L (left)

Sort A[n//2:n] into R (right)

Merge L and R into B

Analysis of Merge Sort …
T(n): time taken by Merge Sort on input of size n

Assume, for simplicity, that n = 2k

T(n) = 2T(n/2) + n

Two subproblems of size n/2

Merging solutions requires time O(n/2+n/2) = O(n)

Solve the recurrence by unwinding

Analysis of Merge Sort …
T(1) = 1

T(n) = 2T(n/2) + n

	 	 = 2 [2T(n/4) + n/2] + n = 22 T(n/22) + 2n

	 	 = 22 [2T(n/23) + n/22] + 2n = 23 T(n/23) + 3n 
 …

	 	 = 2j T(n/2j) + jn

When j = log n, n/2j = 1, so T(n/2j) = 1

log n means log2 n unless otherwise specified!

T(n) = 2j T(n/2j) + jn = 2log

n + (log n) n = n + n log n = O(n log n)

Variations on merge
Union of two sorted lists (discard duplicates)

While A[i] == B[j], increment j
Append A[i] to C and increment i

Intersection of two sorted lists

If A[i] < B[j], increment i

If B[j] < A[i], increment j

If A[i] == B[j]

While A[i] == B[j], increment j
Append A[i] to C and increment i

Exercise: List difference: elements in A but not in B

Merge Sort: Shortcomings

Merging A and B creates a new array C

No obvious way to efficiently merge in place

Extra storage can be costly

Inherently recursive

Recursive call and return are expensive

