PROGRAMMING,
DATA STRUGTURES AND
ALGORITHMS IN PYTHON

Week 4, Lecture 2

http://www.cmi.ac.in/~madhavan

Merge sorted lists

* Given two sorted lists A and B, combine into a
sorted list C

* Compare first element of A and B
* Move it into C
* Repeat until all elements in A and B are over

* Merging A and B

Analysis of Merge

How much time does Merge take?

* Merge A of size m, B of size n into C

* |n each iteration, we add one element to C
* Size of Cis m+n
* M+n < 2 max(m,n)

* Hence O(max(m,n)) = O(n) if m = n

Merge Sort

Tosort A[@:n] into B[0:n]
* |f nis 1, nothing to be done

* Otherwise

* Sort A[0:n//2] into L (left)
* Sort A[n//2:n] into R (right)

* Merge L and R into B

Analysis of Merge Sort ...

* T(n): time taken by Merge Sort on input of size n
* Assume, for simplicity, that n = 2¥
* T(n) = 2T(n/2) + n
* Two subproblems of size n/2
* Merging solutions requires time O(n/2+n/2) = O(n)

* Solve the recurrence by unwinding

Analysis of Merge Sort ...

* T(1) =1
* T(n) =2T(n/2) + n
=2 [2T(n/4) + n/2] + n = 2° T(n/2°) + 2n
= 2° [2T(n/2°) + n/2°] + 2n = 2° T(n/2°) + 3n

= 2 T(n/2)) + jn
* When j =logn, n/2' =1, so T(n/2)) = 1
* |log n means log> n unless otherwise specified!

* T(n) = 2 T(n/2) + jn = 2"°°" + (logn) n = n + n logn = O(n log n)

Variations on merge

* Union of two sorted lists (discard duplicates)
* While A[1] == B[]], Increment j
* Append AJi] to C and increment 1

* |ntersection of two sorted lists
* [f A[1] < B[3], Increment 1
* [fB[J] < A[1], iIncrement j

* AL =— Bl J]

* While A[1] == B[]], Increment j
* Append AJi] to C and increment 1

* Exercise: List difference: elements in A but not in B

Merge Sort: Shortcomings

* Merging A and B creates a new array C
* No obvious way to efficiently merge in place
* EXxtra storage can be costly

* |nherently recursive

* Recursive call and return are expensive

