PROGRAMMING,
DATA STRUGTURES AND
ALGORITHMS IN PYTHON

Week 3, Lecture 8

http://www.cmi.ac.in/~madhavan

Inductive definitions

Many arithmetic functions are naturally defined
inductively
* Factorial

* 0l =1

* n!l =nx(n-1)!

* Multiplication — repeated addition
* mx1=m

* mXxn=m+ (mXx(n-1))

Inductive definitions ...

* Define one or more base cases

* Inductive step defines f(n) in terms of smaller
arguments

Recursive computation

* |nductive definitions naturally give rise to recursive
programs

def factorial(n):
it h — O
return(l)
else:
return(n * factorial(n-1))

Recursive computation

* |nductive definitions naturally give rise to recursive
programs

def multlply(m n):
it —
return(m)
else:
return(m + multiply(m,n-1))

Inductive definitions for lists

* Lists can be decomposed as

* First (or last) element

* Remaining list with one less element
* Define list functions inductively

* Base case: empty list or list of size 1

* Inductive step: 1(l) in terms of smaller sublists of |

Inductive definitions for lists

* Length of a list
def length(l):

L
return(@)
else:

return(l + length(l[1:])

Inductive definitions for lists

* Sum of a list of numbers

def sumlist(l):

L
return(@)
else:

return(l[@] + sumlist(1l[1:])

Recursive Insertion sort

* Base case: If list has length 1 or O, return the list
* Inductive step:
* Inductively sort slice 1[0:1en(1)-1]

* |Insert L[len(l)-1] into this sorted slice

Recursive Insertion sort

def InsertionSort(seq):
1sort(seq, len(seq))

def 1sort(seqg,k): # Sort slice seq[@:k]
el ma]
1sort(seq,k-1)
insert(seq,k-1)

def insert(seq,k): # Insert seq[k] into sorted seq[@:k-1]
pos = k
while pos > @ and seqg[pos] < seq[pos-1]:

(seq[pos],seq[pos-1]) = (seq[pos-1],seq[pos])
pos = pos-1

Recursion limit In Python

* Python sets a recursion limit of about 1000

>>> | = l1st(range(1000,0,-1))
>>> InsertionSort(l)

RecursionError: maximum recursion depth
exceeded 1n comparison

* Can manually raise the limit

>>> 1mport sys
>>> Sys.setrecursionlimit(10000)

Recursive Insertion sort

* T(n), time to run insertion sort on length n
* Time T(n-1) to sort slice seq[0:n-1]

* N-1 steps to insert segq[n-1] in sorted slice

* Recurrence
* T(n) =n-1+ T(n-1)
Tl =1
* [(N)=n-1+T(n-1)=n-1+(n-2) + T(n-2))=... =
(n-1) + (N-2) + ... + 1 = n(n-1)/2 = O(n?)

O(n?) sorting algorithms

* Selection sort and insertion sort are both O(n?)
* O(n?) sorting is infeasible for n over 5000

* Among O(n?) sorts, insertion sort is usually better
than selection sort

* \What happens when we apply insertion sort to
an already sorted list?

* Next week, some more efficient sorting algorithms

