PROGRAMMING,
DATA STRUGTURES AND
ALGORITHMS IN PYTHON

Week 3, Lecture 4

http://www.cmi.ac.in/~madhavan

Sequences of values

* Two basic ways of storing a sequence of values
* Arrays
* Lists

* \What’s the difference?

Arrays

* Single block of memory, elements of uniform type
* Typically size of sequence is fixed in advance

* |ndexing is fast
* Access seq[1] In constant time for any 1

* Compute offset from start of memory block

* Inserting between seq[1] and seq[1+1] Is
expensive

* Contraction is expensive

| IStS

* \alues scattered in memory

* Each element points to the next—"linked” list
* Flexible size

* Follow I links to access seq[1]

* Cost proportional to 1

* Inserting or deleting an element is easy
* “Plumbing”

Operations

* Exchange seq[1] and seq[j]

* Constant time in array, linear time in lists

* Delete seqg[1] or Insert v after seqg[1]
* Constant time in lists (if we are already at seq[1])

* Linear time In array

* Algorithms on one data structure may not transfer
to another

* Example: Binary search

Search problem

* |s a value v present in a collection seq?
* Does the structure of seq matter?

* Array vs list

* Does the organization of the information matter?

* \/alues sorted/unsorted

The unsorted case

def search(seq,v):

fOor X 1n Seg:
1f X == v:
return(True)

return(False)

Worst case

* Need to scan the entire sequence seq

* Time proportional to length of sequence

* Does not matter if seq is array or list

Search a sorted sequence

* What if seq is sorted?
* Compare v with midpoint of seqg
* |f midpoint is v, the value is found
* |f v < midpoint, search left half of seq
* |f v > midpoint, search right half of seq

* Binary search

Binary searcn ...

def bsearch(seq,v,l,r):
/L Ssearcn for- v 1n seqgllzr]. seq 1s sorted

ifr-1==20;:
return(False)

mid = (L + r) // 2 // 1nteger division

1E V== seqgimiagl:
return (True)

itV < segimid]:
return (bsearch(seqg,v,1l,mid))
else:

return (bsearch(seq,v,mid+1,r))

Binary Search ...

* How long does this take?
* Each step halves the interval to search
* For an interval of size 0, the answer is
immediate
* T(n): time to search in an array of size n
* T(0) =1
* T(n) =1+ T(n/2)

Binary Search ...

* T(n): time to search in a list of size n
* T(0) = 1
* T(n) =1 + T(n/2)

* Unwind the recurrence

* ln=1+1n2) =1L+ 1+ Hn2)-"
=1+1+...+1+T(n/25
=1+1+...+1+T(n/2"°9") = O(log n)

Binary Search ...

* \Works only for arrays

* Need to look up seqg[1] in constant time

* By seeing only a small fraction of the sequence,
we can conclude that an element is not present!

Python lists

* Are built in lists in Python lists or arrays?

* Documentation suggests they are lists
* Allow efficient expansion, contraction

* However, positional indexing allows us to treat
them as arrays

* |n this course, we will “pretend” they are arrays

* Will later see explicit implementation of lists

