
PROGRAMMING,  
DATA STRUCTURES AND
ALGORITHMS IN PYTHON

Madhavan Mukund, Chennai Mathematical Institute
http://www.cmi.ac.in/~madhavan

Week 3, Lecture 4

NPTEL MOOC

http://www.cmi.ac.in/~madhavan

Sequences of values

Two basic ways of storing a sequence of values

Arrays

Lists

What’s the difference?

Arrays
Single block of memory, elements of uniform type

Typically size of sequence is fixed in advance

Indexing is fast

Access seq[i] in constant time for any i
Compute offset from start of memory block

Inserting between seq[i] and seq[i+1] is
expensive

Contraction is expensive

Lists
Values scattered in memory

Each element points to the next—“linked” list

Flexible size

Follow i links to access seq[i]

Cost proportional to i

Inserting or deleting an element is easy

“Plumbing”

Operations
Exchange seq[i] and seq[j]

Constant time in array, linear time in lists

Delete seq[i] or Insert v after seq[i]

Constant time in lists (if we are already at seq[i])

Linear time in array

Algorithms on one data structure may not transfer
to another

Example: Binary search

Search problem

Is a value v present in a collection seq?

Does the structure of seq matter?

Array vs list

Does the organization of the information matter?

Values sorted/unsorted

The unsorted case

def search(seq,v):
 for x in seq:  
 if x == v:  
 return(True)
 return(False)

Worst case

Need to scan the entire sequence seq

Time proportional to length of sequence

Does not matter if seq is array or list

Search a sorted sequence
What if seq is sorted?

Compare v with midpoint of seq

If midpoint is v, the value is found

If v < midpoint, search left half of seq

If v > midpoint, search right half of seq

Binary search

Binary search …
def bsearch(seq,v,l,r):  
// search for v in seq[l:r], seq is sorted
 if r - l == 0:  
 return(False)
 mid = (l + r) // 2 // integer division
 if v == seq[mid]:  
 return (True)
 if v < seq[mid]:  
 return (bsearch(seq,v,l,mid))  
 else:  
 return (bsearch(seq,v,mid+1,r))

Binary Search …

How long does this take?

Each step halves the interval to search

For an interval of size 0, the answer is
immediate

T(n): time to search in an array of size n

T(0) = 1

T(n) = 1 + T(n/2)

Binary Search …

T(n): time to search in a list of size n

T(0) = 1

T(n) = 1 + T(n/2)

Unwind the recurrence

T(n) = 1 + T(n/2) = 1 + 1 + T(n/22) = … 
 = 1 + 1 + … + 1 + T(n/2k) 
 = 1 + 1 + … + 1 + T(n/2log n) = O(log n)

Binary Search …

Works only for arrays

Need to look up seq[i] in constant time

By seeing only a small fraction of the sequence,
we can conclude that an element is not present!

Python lists
Are built in lists in Python lists or arrays?

Documentation suggests they are lists

Allow efficient expansion, contraction

However, positional indexing allows us to treat
them as arrays

In this course, we will “pretend” they are arrays

Will later see explicit implementation of lists

