
PROGRAMMING,  
DATA STRUCTURES AND
ALGORITHMS IN PYTHON

Madhavan Mukund, Chennai Mathematical Institute
http://www.cmi.ac.in/~madhavan

Week 3, Lecture 2

NPTEL MOOC

http://www.cmi.ac.in/~madhavan

Lists

Lists are mutable

list1 = [1,3,5,6]  
list2 = list1  
list1[2] = 7

list1 is now [1,3,7,6]

So is list2

Lists
On the other hand

list1 = [1,3,5,6]  
list2 = list1  
list1 = list1[0:2] + [7] + list1[3:]

list1 is now [1,3,7,6]

list2 remains [1,3,5,6]

Concatenation produces a new list

Extending a list

Adding an element to a list, in place

list1 = [1,3,5,6]  
list2 = list1  
list1.append(12)

list1 is now [1,3,5,6,12]

list2 is also [1,3,5,6,12]

Extending a list …
On the other hand

list1 = [1,3,5,6]  
list2 = list1  
list1 = list1 + [12]

list1 is now [1,3,5,6,12]

list2 remains [1,3,5,6]

Concatenation produces a new list

List functions
list1.append(v) — extend list1 by a single
value v

list1.extend(list2) — extend list1 by a list of
values

In place equivalent of list1 = list1 + list2

list1.remove(x) — removes first occurrence of x

Error if no copy of x exists in list1

A note on syntax

list1.append(x) rather than append(list1,x)

list1 is an object

append() is a function to update the object

x is an argument to the function

Will return to this point later

Further list manipulation
Can also assign to a slice in place

list1 = [1,3,5,6]  
list2 = list1  
list1[2:] = [7,8]
list1 and list2 are both [1,3,7,8]

Can expand/shrink slices, but be sure you know
what you are doing!

list1[2:] = [9,10,11] produces
[1,3,9,10,11]
list1[0:2] = [7] produces [7,9,10,11]

List membership

x in l returns True if value x is found in list l

Safely remove x from l  
if x in l:  
 l.remove(x)

Remove all occurrences of x from l  
while x in l:  
 l.remove(x)

Other functions
l.reverse() — reverse l in place

l.sort() — sort l in ascending order

l.index(x) — find leftmost position of x in l

Avoid error by checking if x in l

l.rindex(x) — find rightmost position of x in l

Many more … see Python documentation!

Initialising names

A name cannot be used before it is assigned a
value

y = x + 1 # Error if x is unassigned

May forget this for lists where update is implicit

l.append(v)

Python needs to know that l is a list

Initialising names …
def factors(n):

 for i in range(1,n+1):  
 if n%i == 0:  
 flist.append(i)

return(flist)

Initialising names …
def factors(n):

 flist = []

 for i in range(1,n+1):  
 if n%i == 0:  
 flist.append(i)

return(flist)

Summary

To extend lists in place, use l.append(),
l.extend()

Can also assign new value, in place, to a slice

Many built in functions for lists — see
documentation

Don’t forget to assign a value to a name before it
is first used

