
PROGRAMMING,  
DATA STRUCTURES AND
ALGORITHMS IN PYTHON

Madhavan Mukund, Chennai Mathematical Institute
http://www.cmi.ac.in/~madhavan

Week 2, Lecture 6

NPTEL MOOC

http://www.cmi.ac.in/~madhavan

Some examples
Find all factors of a number n

Factors must lie between 1 and n

def factors(n):  
 factorlist = []  
 for i in range(1,n+1):  
 if n%i == 0:  
 factorlist = factorlist + [i]  
 return(factorlist)

Primes
Prime number — only factors are 1 and itself

factors(17) is [1,17]

factors(18) is [1,2,3,6,9,18]

def isprime(n):  
 return(factors(n) == [1,n])

1 should not be reported as a prime

factors(1) is [1], not [1,1]

Primes upto n

List all primes below a given number

def primesupto(n):  
 primelist = []  
 for i in range(1,n+1):  
 if isprime(i):  
 primelist = primelist + [i]  
 return(primelist)

First n primes

List the first n primes

def nprimes(n):  
 (count,i,plist) = (0,1,[])  
 while(count < n):  
 if isprime(i):  
 (count,plist) = (count+1,plist+[i])  
 i = i+1  
 return(plist)

for and while

primesupto()

Know we have to scan from 1 to n, use for

nprimes()

Range to scan not known in advance, use while

for and while
Can use while to simulate for

for n in range(i,j):  
 statement

n = i  
while n < j:  
 statement  
 n = n+1

for n in l:  
 statement

i = 0  
while i < len(l):  
 n = l[i]  
 statement  
 i = i+1

for and while
Can use while to simulate for

However, use for where it is natural

Makes for more readable code

What makes a good program?

Correctness and efficiency — algorithm

Readability, ease of maintenance — style

What you say, and how you say it

