PROGRAMMING,
DATA STRUGTURES AND
ALGORITHMS IN PYTHON

Week 2, Lecture 3

http://www.cmi.ac.in/~madhavan

Types of values In Pytnhon

* Numbers: int, float

* Arithmetic operations +,-,*,/,..

* Logical values: bool, {True, False}
* |ogical operations not,and,..

* Comparisons ==, !=,<,>,<=,>=

* Strings: str, sequences of characters
* Extract by position s[1], slice s[1:7]

* Concatenation +, length 1en(), ...

| IStS

* Seqguences of values

factors

names

= [1,235,1®]

["Anand" , "Charles", "Mugsit"]

* Type need not be uniform

mixed = [3, True, "Yellow"]

* Extract va

factors

ues by position, s

3] is 10, mixed

* Length is given by len()

len(Chames) is 3

ice, like str

i dlis |3, Fruel

LIsts and strings

* For str, both a single position and a slice return
strings

= nello:
hi@] —= il =

* For lists, a single position returns a value, a slice
returns a list

factors = 1.2 5. 10]
factorsid]l =— | ‘Factersfo. 1] — [1]

Nested lists

* Lists can contain other lists

nested = [[2,137]],4,] hello]]
nested[0@] Is [2,[37]]
nested[1l] Is 4
nested[2][@][3] I1s "l"
Olfl:21:1s [[[37]]

nested[

Updating lists

* Unlike strings, lists can be updated in place

nested = [[2.13711.4 ['hello"]]
nestedfl] = ¢

nested isnow [[2,[37]],7,["hello"]]
nested[@][1][@] = 19

nested isnow [[2,[19]],7,["hello"]]

* Lists are mutable, unlike strings

Mutable vs Immutable

* \What happens when we assigh names?

X =5
Y = A
X =/

* Has the value of y changed?
* No, why should it?

* Does assignment copy the value or make both
names point to the same value?

Mutable vs Immutable ...

* Does assignment copy the value or make both
names point to the same value?

* For immutable values, we can assume that
assignment makes a fresh copy of a value

* \alues of type 1nt, float, bool, str are
Immutable

* Updating one value does not affect the copy

Mutable vs Immutable ...

* For mutable values, assignment does not make a
fresh copy

listt = |1 3 5 7]
list2 = 115t1
I1st1f2] —

* What is List2[2] now?
* list2[2] Is also 4

* 11st1l and list2Z are two names for the same list

Copying lists

* How can we make a copy of a list?
* A slice creates a new (sub)list from an old one

* Recall T[:k] i1s 1{@: k], 1lk:] I1s L[k:lenCl)]

* Omitting both end points gives a full slice
Ll —— [[0 lenCl)]

* To make a copy of a list use a full slice
listZ = histl]

Digression on equality

* Consider the following assignments
tistl — |1 3 5 0
et = 1 3 5.7
Lists = List?Z

* All three lists are equal, but there is a difference

* l1st]l and li1stZ are two lists with same value

* 11stZ2 and list3 are two names for same list

Digression on equality ...

fast]l = 1. 3.5 7
it = Ik 35 5 7
l1st3 = list?2

* X == y checks if x and y have same value
* X 1s y checks if x and y refer to same object

listl == listZ2 Is True
listZ2 == list3 Is True

listZ2 1s 1ist3 Is frie
li1stl 1s listZ2 Is False

Concatenation

* Like strings, lists can be glued together using +

listl =
list2 =
1l1ist3 =

1,3,5,7
4,5,6,8_

st 4-drsk?

* list3isnow [1,3,5,7,4,5,6,8]

* Note that + always produces a new list

b A
n
—~+
N
|

listl =

= [k, 3.5
= Llistl
listl + [9]

* l1stl and ListZ no longer point to the same object

Summary

* Lists are sequences of values
* \alues need not be of uniform type

* Lists may be nested
* (Can access value at a position, or a slice

* Lists are mutable, can update in place
* Assignment does not copy the value
* Use full slice to make a copy of a list

