
PROGRAMMING,  
DATA STRUCTURES AND 
ALGORITHMS IN PYTHON

Madhavan Mukund, Chennai Mathematical Institute 
http://www.cmi.ac.in/~madhavan

Week 2, Lecture 3

NPTEL MOOC

http://www.cmi.ac.in/~madhavan


Types of values in Python
Numbers: int, float

Arithmetic operations +,-,*,/,…

Logical values: bool, {True, False}
Logical operations not,and,… 
Comparisons ==,!=,<,>,<=,>=

Strings: str, sequences of characters
Extract by position s[i], slice s[i:j]

Concatenation +, length len(), …



Lists
Sequences of values

factors = [1,2,5,10]
names = ["Anand","Charles","Muqsit"]

Type need not be uniform

mixed = [3, True, "Yellow"]

Extract values by position, slice, like str
factors[3] is 10, mixed[0:2] is [3,True]

Length is given by len()
len(names) is 3



Lists and strings
For str, both a single position and a slice return 
strings

h = "hello"
h[0] == h[0:1] == "h"

For lists, a single position returns a value, a slice 
returns a list

factors = [1,2,5,10]
factors[0] == 1, factors[0:1] == [1]



Nested lists

Lists can contain other lists


nested = [[2,[37]],4,["hello"]]

nested[0] is [2,[37]]
nested[1] is 4
nested[2][0][3] is "l"
nested[0][1:2] is [[37]]



Updating lists
Unlike strings, lists can be updated in place


nested = [[2,[37]],4,["hello"]]
nested[1] = 7
nested is now [[2,[37]],7,["hello"]]
nested[0][1][0] = 19
nested is now [[2,[19]],7,["hello"]]

Lists are mutable, unlike strings



Mutable vs immutable
What happens when we assign names?


x = 5  
y = x  
x = 7

Has the value of y changed?


No, why should it?


Does assignment copy the value or make both 
names point to the same value?



Mutable vs immutable …

Does assignment copy the value or make both 
names point to the same value?


For immutable values, we can assume that 
assignment makes a fresh copy of a value


Values of type int, float, bool, str are 
immutable


Updating one value does not affect the copy



Mutable vs immutable …
For mutable values, assignment does not make a 
fresh copy


list1 = [1,3,5,7]  
list2 = list1  
list1[2] = 4

What is list2[2] now?


list2[2] is also 4


list1 and list2 are two names for the same list



Copying lists
How can we make a copy of a list?


A slice creates a new (sub)list from an old one


Recall l[:k] is l[0:k], l[k:] is l[k:len(l)]


Omitting both end points gives a full slice

l[:] == l[0:len(l)]

To make a copy of a list use a full slice

list2 = list1[:]



Digression on equality

Consider the following assignments

list1 = [1,3,5,7]  
list2 = [1,3,5,7]  
list3 = list2

All three lists are equal, but there is a difference

list1 and list2 are two lists with same value

list2 and list3 are two names for same list



Digression on equality …
list1 = [1,3,5,7]  
list2 = [1,3,5,7]  
list3 = list2
x == y checks if x and y have same value

x is y checks if x and y refer to same object

list1 == list2 is True  
list2 == list3 is True
list2 is list3 is True  
list1 is list2 is False



Concatenation
Like strings, lists can be glued together using +


list1 = [1,3,5,7]  
list2 = [4,5,6,8]  
list3 = list1 + list2

list3 is now [1,3,5,7,4,5,6,8]
Note that + always produces a new list

list1 = [1,3,5,7]  
list2 = list1  
list1 = list1 + [9]

list1 and list2 no longer point to the same object



Summary
Lists are sequences of values 


Values need not be of uniform type

Lists may be nested


Can access value at a position, or a slice


Lists are mutable, can update in place

Assignment does not copy the value

Use full slice to make a copy of a list


