
PROGRAMMING,  
DATA STRUCTURES AND
ALGORITHMS IN PYTHON

Madhavan Mukund, Chennai Mathematical Institute
http://www.cmi.ac.in/~madhavan

Week 2, Lecture 1

NPTEL MOOC

http://www.cmi.ac.in/~madhavan

A typical Python program
def function_1(..,..):  
 …  
def function_2(..,..):  
 …  
 ⋮ 
def function_k(..,..):  
 …

statement_1  
statement_2  
 ⋮ 
statement_n

Interpreter executes
statements from top
to bottom

Function definitions
are “digested” for
future use

Actual computation
starts from
statement_1

A more messy program
statement_1

def function_1(..,..):  
 …

statement_2  
statement_3

def function_2(..,..):  
 …

statement_4  
 ⋮

Python allows free
mixing of function
definitions and
statements

But programs written
like this are likely to
be harder to
understand and
debug

Assignment statement
Assign a value to a name

i = 5  
j = 2*i  
j = j + 5

Left hand side is a name

Right hand side is an expression

Operations in expression depend on type of value

Numeric values

Numbers come in two flavours

int — integers

float — fractional numbers

178, -3, 4283829 are values of type int

37.82, -0.01, 28.7998 are values of type float

int vs float
Why are these different types?

Internally, a value is stored as a finite sequence of
0’s and 1’s (binary digits, or bits)

For an int, this sequence is read off as a binary
number

For a float, this sequence breaks up into a
mantissa and exponent

Like “scientific” notation: 0.602 x 1024

Operations on numbers
Normal arithmetic operations: +,-,*,/

Note that / always produces a float

7/3.5 is 2.0, 7/2 is 3.5

Quotient and remainder: // and %

9//5 is 1, 9%5 is 4

Exponentiation: **

3**4 is 81

Other operations on
numbers

log(), sqrt(), sin(), …

Built in to Python, but not available by default

Must include math “library”

from math import *

Names, values and types

Values have types

Type determines what operations are legal

Names inherit their type from their current value

Type of a name is not fixed

Unlike languages like C, C++, Java where each
name is “declared” in advance with its type

Names, values and types
Names can be assigned values of different types as
the program evolves

i = 5 # i is int  
i = 7*1 # i is still int  
j = i/3 # j is float, / creates float  
…  
i = 2*j # i is now float

type(e) returns type of expression e

Not good style to assign values of mixed types to
same name!

Boolean values: bool

True, False

Logical operators: not, and, or

not True is False, not False is True

x and y is True if both of x,y are True

x or y is True if at least one of x,y is True

Comparisons
x == y, a != b,  
z < 17*5, n > m,  
i <= j+k, 19 >= 44*d

Combine using logical operators

n > 0 and m%n == 0

Assign a boolean expression to a name

divisor = (m%n == 0)

Examples
def divides(m,n):  
 if n%m == 0:  
 return(True)  
 else:  
 return(False)

def even(n):  
 return(divides(2,n))

def odd(n):  
 return(not divides(2,n))

Summary

Values have types

Determine what operations are allowed

Names inherit type from currently assigned value

Can assign values of different types to a name

int, float, bool

