PROGRAMMING,
DATA STRUGTURES AND
ALGORITHMS IN PYTHON

Week 1, Lecture 3

http://www.cmi.ac.in/~madhavan

Algorithm for gcd(m,n)

* Jo find the largest common factor, start at the end
and work backwards

* Let 1 run frommin(m,n) to 1

* First common factor that we find will be gcd!

cuclid’s algorithm

* Suppose d divides bothmand n,and m > n
* Thenm = ad, n = bd

* Som-n = ad - bd = (a-b)d

* d divides m-n as well!

* S0 gcd(m,n) = gcd(n,m-n)

Euclid’s algorithm

* Consider gcd(m,n) with m > n
* |f n divides m, return n

* Otherwise, compute gcd(n,m-n) and return that
value

Euclid’s algorithm

def gcd(m,n):

Assume m >= n
1t m < n:

(m,n) = (n,m)

it mdn) — 0
return(n)
else:
dgiLft — m-n
diff > n? Possible!
return(gcd(max(n,diff),min(n,diff))

Euclid’s algorithm, again

def gcd(m,n):

1f m < n: # Assume m >= n

(m,n) = (n,m)

while (m¥n) != 0:
diff = m-n
diff > n? Possible!
(m.n) = Cmax(Cn. diff) mntn, diflf))

return(n)

Even better

* Suppose n does not divide m

* Thenm = gn + r, where g is the quotient, r Is the
remainder when we divide m by n

* Assume d divides both m and n
* Thenm = ad, n = bd
* Soad = g(bd) + r

* |t follows that r

cd, so d divides r as well

Euclid’s algorithm

* Consider gcd(m,n) with m > n
* |f n divides m, return n

* Otherwise, let r = m%n

* Return gcd(n,r)

Euclid’s algorithm

def gcd(m,n):

1f m < n: # Assume m >= n

(m,n) = (n,m)

1f (m¥%n) == 0:
return(n)
else:
return(gcd(n,mdn)) # m¥n < n, always!

Euclid’s algorithm, revisited

def gcd(m,n):

1f m < n: # Assume m >= n

(m,n) = (n,m)

while (m¥n) != 0:
(m,n) = (n,m¥n) # m¥n < n, always!

return(n)

=fficiency

* Can show that the second version of Euclid’s
algorithm takes time proportional to the number of
digits in m

* |f mis 1 billion (109), the naive algorithm takes

billions of steps, but this algorithm takes tens of
steps

