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An algorithm for gcd(m,n)
Use fm, fn for list of factors of m, n, respectively


For each i from 1 to m, add i to fm if i divides m


For each j from 1 to n, add j to fn if j divides n


Use cf for list of common factors


For each f in fm, add f to cf if f also appears in fn


Return largest (rightmost) value in cf



Can we do better?

We scan from 1 to m to compute fm and again from 
1 to n to compute fn


Why not a single scan from 1 to max(m,n)?


For each i in 1 to max(m,n), add i to fm if i 
divides m and add i to fn if i divides n



Even better?
Why compute two lists and then compare them to 
compute common factors cf? Do it in one shot.


For each i in 1 to max(m,n), if i divides m and i 
also divides n, then add i to cf

Actually, any common factor must be less than  
min(m,n)

For each i in 1 to min(m,n), if i divides m and i 
also divides n, then add i to cf



A shorter Python program

def gcd(m,n):

  cf = []  
  for i in range(1,min(m,n)+1):  
    if (m%i) == 0 and (n%i) == 0:  
      cf.append(i)

  return(cf[-1])



Do we need lists at all?
We only need the largest common factor


1 will always be a common factor


Each time we find a larger common factor, discard 
the previous one


Remember the largest common factor seen so far 
and return it


mrcf — most recent common factor



No lists!

def gcd(m,n):  
 
  for i in range(1,min(m,n)+1):  
    if (m%i) == 0 and (n%i) == 0:  
      mrcf = i

  return(mrcf)



Scan backwards?

To find the largest common factor, start at the end 
and work backwards


Let i run from min(m,n) to 1


First common factor that we find will be gcd!



No lists!

def gcd(m,n):  
 
  i = min(m,n)  
 
  while i > 0:  
    if (m%i) == 0 and (n%i) == 0:  
      return(i)  
    else:  
      i = i-1



A new kind of repetition
   while condition:  
     step 1  
     step 2  
     . . .  
     step k

Don’t know in advance how many times we will 
repeat the steps


Should be careful to ensure the loop terminates—
eventually the condition should become false!



Summary

With a little thought, we have dramatically 
simplified our naive algorithm


Though the newer versions are simpler, they still 
take time proportional to the values m and n


A much more efficient approach is possible


