
PROGRAMMING,  
DATA STRUCTURES AND
ALGORITHMS IN PYTHON

Madhavan Mukund, Chennai Mathematical Institute
http://www.cmi.ac.in/~madhavan

Week 1, Lecture 2

NPTEL MOOC

http://www.cmi.ac.in/~madhavan

An algorithm for gcd(m,n)
Use fm, fn for list of factors of m, n, respectively

For each i from 1 to m, add i to fm if i divides m

For each j from 1 to n, add j to fn if j divides n

Use cf for list of common factors

For each f in fm, add f to cf if f also appears in fn

Return largest (rightmost) value in cf

Can we do better?

We scan from 1 to m to compute fm and again from
1 to n to compute fn

Why not a single scan from 1 to max(m,n)?

For each i in 1 to max(m,n), add i to fm if i
divides m and add i to fn if i divides n

Even better?
Why compute two lists and then compare them to
compute common factors cf? Do it in one shot.

For each i in 1 to max(m,n), if i divides m and i
also divides n, then add i to cf

Actually, any common factor must be less than
min(m,n)

For each i in 1 to min(m,n), if i divides m and i
also divides n, then add i to cf

A shorter Python program

def gcd(m,n):

 cf = []  
 for i in range(1,min(m,n)+1):  
 if (m%i) == 0 and (n%i) == 0:  
 cf.append(i)

 return(cf[-1])

Do we need lists at all?
We only need the largest common factor

1 will always be a common factor

Each time we find a larger common factor, discard
the previous one

Remember the largest common factor seen so far
and return it

mrcf — most recent common factor

No lists!

def gcd(m,n):  
 
 for i in range(1,min(m,n)+1):  
 if (m%i) == 0 and (n%i) == 0:  
 mrcf = i

 return(mrcf)

Scan backwards?

To find the largest common factor, start at the end
and work backwards

Let i run from min(m,n) to 1

First common factor that we find will be gcd!

No lists!

def gcd(m,n):  
 
 i = min(m,n)  
 
 while i > 0:  
 if (m%i) == 0 and (n%i) == 0:  
 return(i)  
 else:  
 i = i-1

A new kind of repetition
 while condition:  
 step 1  
 step 2  
 . . .  
 step k

Don’t know in advance how many times we will
repeat the steps

Should be careful to ensure the loop terminates—
eventually the condition should become false!

Summary

With a little thought, we have dramatically
simplified our naive algorithm

Though the newer versions are simpler, they still
take time proportional to the values m and n

A much more efficient approach is possible

