
PROGRAMMING,  
DATA STRUCTURES AND
ALGORITHMS IN PYTHON

Madhavan Mukund, Chennai Mathematical Institute
http://www.cmi.ac.in/~madhavan

Week 1, Lecture 1

NPTEL MOOC

http://www.cmi.ac.in/~madhavan

Algorithms, programming
Algorithm: how to systematically perform a task

Write down as a sequence of steps

“Recipe”, or program

Programming language describes the steps

What is a step? Degrees of detail

“Arrange the chairs” vs “Make 8 rows with 10
chairs in each row”

Our focus
Algorithms that manipulate information

Compute numerical functions — f(x,y) = xy

Reorganize data — arrange in ascending order

Optimization — find the shortest route

And more …

Solve Sudoku, play chess, correct spelling …

Greatest common divisor
gcd(m,n)

Largest k such that k divides m and k divides n

gcd(8,12) = 4

gcd(18,25) = 1

1 divides every number

At least one common divisor for every m, n

Computing gcd(m,n)
List out factors of m

List out factors of n

Report the largest number that appears on both lists

Is this a valid algorithm?

Finite presentation of the “recipe”

Terminates after a finite number of steps

Computing gcd(m,n)
Factors of m must be between 1 and m

Test each number in this range

If it divides m without a remainder, add it to list of
factors

Example: gcd(14,63)

Factors of 14
1 2 3 4 5 6 7 8 9 10 11 12 13 141 2 7 14

Computing gcd(14,63)
Factors of 14

Factors of 63

Construct list of common factors

For each factor of 14, check if it is a factor of 63

Return largest factor in this list:

1 2 7 14

1 2 3 … 7 … 9 … 21 … 631 3 7 9 21 63

1 7

7

An algorithm for gcd(m,n)
Use fm, fn for list of factors of m, n, respectively

For each i from 1 to m, add i to fm if i divides m

For each j from 1 to n, add j to fn if j divides n

Use cf for list of common factors

For each f in fm, add f to cf if f also appears in fn

Return largest (rightmost) value in cf

Our first Python program
def gcd(m,n):

 fm = []  
 for i in range(1,m+1):  
 if (m%i) == 0:  
 fm.append(i)
 fn = []  
 for j in range(1,n+1):  
 if (n%j) == 0:  
 fn.append(j)
 cf = []  
 for f in fm:  
 if f in fn:  
 cf.append(f)

 return(cf[-1])

Some points to note
Use names to remember intermediate values

m, n, fm, fn, cf, i, j, f

Values can be single items or collections

m, n, i, j, f are single numbers

fm, fn, cf are lists of numbers

Assign values to names

Explicitly, fn = [], and implicitly, for f in cf:

Update them, fn.append(i)

Some points to note …

Program is a sequence of steps

Some steps are repeated

Do the same thing for each item in a list

Some steps are executed conditionally

Do something if a value meets some
requirement

