NPTEL MOOC, JAN-FEB 2015 Week 8, Module 7

DESIGN AND ANALYSIS OF ALGORITHMS

Intractability: P and NP

MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE http://www.cmi.ac.in/~madhavan

Checking algorithms

- * Checking algorithm C for problem
- Takes in an input instance I and a solution
 "certificate" S for I
- C outputs yes if S represents a valid solution for I, no otherwise

The class NP

- * Checking algorithm C that verifies a solution S for input instance I runs in time polynomial in size(I)
- * Factorization, satisfiability, travelling salesman, vertex cover, independent set, ... are all in NP
 - If we convert an optimization problem to a checking problem by providing a bound, we add only a log factor for binary search through solution space

Why "NP"

- * Non-deterministic Polynomial time
- * "Guess" a solution and check it
- * Origins in computability theory
 - * Non-deterministic Turing machines ...

P and NP

- P is the class of problems with regular polynomial time algorithms (worst-case complexity)
- * P is included in NP generate a solution and check it!
- * Is P = NP?
 - * Is efficient checking same as efficient generation?
 - Intuitively this should not be the case

$P \neq NP?$

- * A more formal reason to believe this?
- * Many "natural" problems are in NP
 - Factorization, satisfiability, travelling salesman, vertex cover, independent set, ...
- * These are all inter-reducible
 - * Like vertex cover, independent set
- * If we can solve one efficiently, we can solve them all!

Boolean satisfiability

- * Boolean variables x,y,z,...
- * Clause disjunction of literals, (x || !y || z || || w)
- * Formula conjunction of clauses, C & D & ... & E
- * 3-SAT each clause has at most 3 literals

Reducing SAT to 3-SAT

- * Consider a 5 literal clause (v|| !w || x || !y || z)
- * Introduce a new literal and split the clause
 - * (v|| !w || a) & (!a || x || !y || z)
 - * This formula is satisfiable iff original clause is
- * Repeat till all clauses are of size 3 or less
 - * (v|| !w || a) & (!a || x || b) & (!b || !y || z)
- * If SAT is hard, so is 3-SAT

3-SAT to independent set

Construct a graph from a 3-SAT formula

(!x || y || !z) & (x || !y || z) & (x || y || z) & (!x || !y)

* Independent set picks one literal per clause to satisfy

- * Edges enforce consistency across clauses
- * Ask for size of independent set = number of clauses

Reductions within NP

- * SAT → 3-SAT, 3-SAT → independent set, independent set ↔ vertex cover
- * Reduction is transitive, so SAT \rightarrow vertex cover, ...
- * Other inter-reducible NP problems
 - Travelling salesman, integer linear programming
- * All these problems are "equally" hard

NP-Completeness

Cook-Levin Theorem

- * Every problem in NP can be reduced to SAT
- Original proof is by encoding computations of Turing machines
- Can replace by encoding of any "generic" computation model — boolean circuits, register machines …

NP-Completeness

- * SAT is said to be complete for NP
 - * It belongs to NP
 - * Every problem in NP reduces to it
- Since SAT reduces to 3-SAT, 3-SAT is also NPcomplete
- In general, to show P is NP-complete, reduce some existing NP-complete problem to P

$P \neq NP?$

- A large class of practically useful problems are NPcomplete
 - * Scheduling, bin-packing, optimal tours ...
- * If one of them has a solution in P, all of them do
- Many smart people have been working on these problems for centuries
 - * Empirical evidence that NP is different from P
 - * But a formal proof is elusive, and worth \$1 million!