
DESIGN AND ANALYSIS  
OF ALGORITHMS
Intractability: P and NP

MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE
http://www.cmi.ac.in/~madhavan

NPTEL MOOC,JAN-FEB 2015
Week 8, Module 7

http://www.cmi.ac.in/~madhavan

Checking algorithms

Checking algorithm C for problem

Takes in an input instance I and a solution
“certificate” S for I

C outputs yes if S represents a valid solution for I,
no otherwise

The class NP
Checking algorithm C that verifies a solution S for
input instance I runs in time polynomial in size(I)

Factorization, satisfiability, travelling salesman,
vertex cover, independent set, … are all in NP

If we convert an optimization problem to a
checking problem by providing a bound, we add
only a log factor for binary search through
solution space

Why “NP”

Non-deterministic Polynomial time

“Guess” a solution and check it

Origins in computability theory

Non-deterministic Turing machines …

P and NP
P is the class of problems with regular polynomial
time algorithms (worst-case complexity)

P is included in NP — generate a solution and
check it!

Is P = NP?

Is efficient checking same as efficient generation?

Intuitively this should not be the case

P ≠ NP?
A more formal reason to believe this?

Many “natural” problems are in NP

Factorization, satisfiability, travelling salesman,
vertex cover, independent set, …

These are all inter-reducible

Like vertex cover, independent set

If we can solve one efficiently, we can solve them all!

Boolean satisfiability

Boolean variables x,y,z,…

Clause — disjunction of literals, (x || !y || z || …. || w)

Formula — conjunction of clauses, C & D & … & E

3-SAT — each clause has at most 3 literals

Reducing SAT to 3-SAT
Consider a 5 literal clause (v|| !w || x || !y || z)

Introduce a new literal and split the clause

(v|| !w || a) & (!a || x || !y || z)

This formula is satisfiable iff original clause is

Repeat till all clauses are of size 3 or less

(v|| !w || a) & (!a || x || b) & (!b || !y || z)

If SAT is hard, so is 3-SAT

3-SAT to independent set
Construct a graph from a 3-SAT formula

(!x || y || !z) & (x || !y || z) & (x || y || z) & (!x || !y)

y

!x !z

!y

x z

y

x z

!y

!x

Independent set picks one literal per clause to satisfy

Edges enforce consistency across clauses

Ask for size of independent set = number of clauses

Reductions within NP
SAT → 3-SAT, 3-SAT → independent set,
independent set ↔ vertex cover

Reduction is transitive, so SAT → vertex cover, …

Other inter-reducible NP problems

Travelling salesman, integer linear programming
…

All these problems are “equally” hard

NP-Completeness

Cook-Levin Theorem

Every problem in NP can be reduced to SAT

Original proof is by encoding computations of
Turing machines

Can replace by encoding of any “generic”
computation model — boolean circuits, register
machines …

NP-Completeness
SAT is said to be complete for NP

It belongs to NP

Every problem in NP reduces to it

Since SAT reduces to 3-SAT, 3-SAT is also NP-
complete

In general, to show P is NP-complete, reduce
some existing NP-complete problem to P

P ≠ NP?
A large class of practically useful problems are NP-
complete

Scheduling, bin-packing, optimal tours …

If one of them has a solution in P, all of them do

Many smart people have been working on these
problems for centuries

Empirical evidence that NP is different from P

But a formal proof is elusive, and worth $1 million!

