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Checking algorithms

Checking algorithm C for problem


Takes in an input instance I and a solution 
“certificate” S for I


C outputs yes if S represents a valid solution for I, 
no otherwise



The class NP
Checking algorithm C that verifies a solution S for 
input instance I runs in time polynomial in size(I)


Factorization, satisfiability, travelling salesman, 
vertex cover, independent set, … are all in NP


If we convert an optimization problem to a 
checking problem by providing a bound, we add 
only a log factor for binary search through 
solution space



Why “NP”

Non-deterministic Polynomial time


“Guess” a  solution and check it


Origins in computability theory


Non-deterministic Turing machines …



P and NP
P is the class of problems with regular polynomial 
time algorithms (worst-case complexity)


P is included in NP — generate a solution and 
check it!


Is P = NP?


Is efficient checking same as efficient generation?


Intuitively this should not be the case



P ≠ NP?
A more formal reason to believe this?


Many “natural” problems are in NP


Factorization, satisfiability, travelling salesman, 
vertex cover, independent set, … 


These are all inter-reducible


Like vertex cover, independent set


If we can solve one efficiently, we can solve them all!



Boolean satisfiability

Boolean variables x,y,z,…


Clause — disjunction of literals, (x || !y || z || …. || w)


Formula — conjunction of clauses, C & D & … & E


3-SAT — each clause has at most 3 literals



Reducing SAT to 3-SAT
Consider a 5 literal clause (v|| !w || x || !y || z)


Introduce a new literal and split the clause


(v|| !w || a) & (!a || x || !y || z)


This formula is satisfiable iff original clause is


Repeat till all clauses are of size 3 or less


(v|| !w || a) & (!a || x || b) & (!b || !y || z)


If SAT is hard, so is 3-SAT



3-SAT to independent set
Construct a graph from a 3-SAT formula


(!x || y || !z) & (x || !y || z) & (x || y || z) & (!x || !y)
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Independent set picks one literal per clause to satisfy


Edges enforce consistency across clauses


Ask for size of independent set = number of clauses



Reductions within NP
SAT → 3-SAT, 3-SAT → independent set, 
independent set ↔ vertex cover


Reduction is transitive, so SAT → vertex cover, …


Other inter-reducible NP problems


Travelling salesman, integer linear programming 
…


All these problems are “equally” hard



NP-Completeness

Cook-Levin Theorem


Every problem in NP can be reduced to SAT


Original proof is by encoding computations of 
Turing machines


Can replace by encoding of any “generic” 
computation model — boolean circuits, register 
machines …



NP-Completeness
SAT is said to be complete for NP


It belongs to NP


Every problem in NP reduces to it


Since SAT reduces to 3-SAT, 3-SAT is also NP-
complete


In general, to show P is NP-complete, reduce 
some existing NP-complete problem to P



P ≠ NP?
A large class of practically useful problems are NP-
complete


Scheduling, bin-packing, optimal tours …


If one of them has a solution in P, all of them do


Many smart people have been working on these 
problems for centuries


Empirical evidence that NP is different from P


But a formal proof is elusive, and worth $1 million!


