DESIGN AND ANALYSIS
OF ALGORITHMS

Intractability: Checking algorithms

http://www.cmi.ac.in/~madhavan

=fficient algorithms

* Shortest path, minimum cost spanning tree,
maximum flow, ... have polynomial time
algorithms

* Search space for solutions is exponential

* All possible paths, all possible spanning trees,
all possible subsets of edges, ...

* Brute force: scan exponential possibilities and
choose the best

=fficient algorithms ...

* Do all problems admit such efficient solutions?
* Unfortunately not

* For a large class of “natural” problems, no
shortcut is known to exist

Generating vs checking

* A teacher assigns homework:

* Factorize a large number that is the product of
two primes

* Student: Given N, find p,q such that pg =N
* (Generate a solution

* Jeacher: Given a student’s solution p,q, verify that
Pg =N

* Check a solution

Checking algorithms

* Checking algorithm C for problem P

* Takes in an input instance | for P and a solution
“certificate” S for |

* C outputs yes if S represents a valid solution for |,
no otherwise

* For factorization, | is N, S is {p,g} and C involves
verifying that pg = N

Boolean satisfiability

* Boolean variables x,y,z,...
* IX — negationof x, x|y — xory,x &y — xandy
* Clause — formula C of the form
xlltyllz]l.... Il w)
* Disjunction of literals (variables, negated variables)

* Formula — conjunction of clauses

C&D&... & E

Boolean satisfiability

* Assign suitable values {True,False} to x,y,z,... so
that the formula evaluates to true

(xllyll2) &l ly) &(y [l 12) & (Ix || ly || 12)

* X = [rue, y = True, z = False makes this true

Xllyll2) & (x[[ly) &(y || !2) & (z]| x) & (Ix || ty || !2)

* Now there Iis no satisfying assignment

Boolean satisfiability

* (Generating a solution
* [ry each possible assignment to x,y,z,...
* N variables — 2N possible assignments
* |s there a better algorithm”? Not known
* Checking a solution

* Given formula F and valuation V(x) for each x,
substitute into formula and evaluate

Boolean satisfiability

* |nput format is important

* Suppose a clause is a conjunction of literals ...

X&ly&z&.... &w)
* ... and a formula is a disjunction of clauses
ClDIl...llE
* Each clause forces a unique valuation

* [ry each clause in sequence

Iravelling salesman

* A network of cities with distances between each
pair

* A complete graph G = (V,E) with edge weights

* Find the shortest tour that visits each city exactly
once

* Simple cycle x,y,z,...,x visiting all vertices, of
minimum cost

Iravelling salesman

* Designing a checking algorithm
* Checking algorithm must give a yes/no answer

* GGiven a graph G and a proposed solution S we
can

* Verify that S is a cycle
* Compute its cost

* How to check that S is the least cost cycle?

Iravelling salesman

* Transform the problem

*

*

Is there a tour with cost at most K?
Now, given a solution S, we can check it

For the original problem, cost is at most the sum
of all the edge weights in the graph

Find optimum K — test different values using
binary search

INndependent set

* U,v are independent if there is no edge
(u,v)

* U is an independent set if each pair
{u,v} in U is independent

* Constitute a neutral committee
where none of the members know
each other

* Find the largest independent set in a
given graph

* Checking version: Is there an
independent set of size K?

INndependent set

* U,v are independent if there is no edge
(u,v)

* U is an independent set if each pair
{u,v} in U is independent

* Constitute a neutral committee
where none of the members know
each other

* Find the largest independent set in a
given graph

* Checking version: Is there an
independent set of size K?

Vertex cover

* Node u covers every edge (u,v)
iIncident on u

* U is a vertex cover if each edge Iin the
graph is covered by some vertex in U

* Position survelllance cameras at
Intersections to watch all roads

* FIind the smallest vertex cover in a
given graph

* Checking version: Is there an vertex
cover of size K?

Vertex cover

* Node u covers every edge (u,v)
iIncident on u

* U is a vertex cover if each edge Iin the
graph is covered by some vertex in U

* Position survelllance cameras at
Intersections to watch all roads

* FIind the smallest vertex cover in a
given graph

* Checking version: Is there an vertex
cover of size K?

Connecting independent
set and vertex cover

* U Is an independent set of size K iff
V-U is a vertex cover of size N-K

. =)

Every edge (u,v) has at most one
end point in U, so at least one
end point in V-U

0 5o

For any edge (u,v), at least one
endpoint in V-U, so no edges
(u,v) within U

Connecting independent
set and vertex cover

* U Is an independent set of size K iff
V-U is a vertex cover of size N-K

. =)

Every edge (u,v) has at most one
end point in U, so at least one
end point in V-U

0 5o

For any edge (u,v), at least one
endpoint in V-U, so no edges
(u,v) within U

Connecting independent
set and vertex cover

* U Is an independent set of size K iff
V-U is a vertex cover of size N-K

. =)

Every edge (u,v) has at most one
end point in U, so at least one
end point in V-U

0 5o

For any edge (u,v), at least one
endpoint in V-U, so no edges
(u,v) within U

Reductions

* |Independent set and vertex cover reduce to each
other

* Recall: if A reduces to B and A is intractable, so is B

* Many pairs of checkable problems are inter-reducible

* All "equally” hard

Algorithm for A

>

Preprocess|

Algorithm | B(y)

for B Postprocess

A

