NPTEL MOOC, JAN-FEB 2015 Week 8, Module 6

DESIGN AND ANALYSIS OF ALGORITHMS

Intractability: Checking algorithms

MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE http://www.cmi.ac.in/~madhavan

Efficient algorithms

- Shortest path, minimum cost spanning tree, maximum flow, ... have polynomial time algorithms
- * Search space for solutions is exponential
 - * All possible paths, all possible spanning trees, all possible subsets of edges, ...
 - Brute force: scan exponential possibilities and choose the best

Efficient algorithms ...

- * Do all problems admit such efficient solutions?
- * Unfortunately not
- For a large class of "natural" problems, no shortcut is known to exist

Generating vs checking

- * A teacher assigns homework:
 - Factorize a large number that is the product of two primes
- * Student: Given N, find p,q such that pq = N
 - * Generate a solution
- * Teacher: Given a student's solution p,q, verify that pq = N
 - * Check a solution

Checking algorithms

- * Checking algorithm C for problem P
- Takes in an input instance I for P and a solution "certificate" S for I
- C outputs yes if S represents a valid solution for I, no otherwise
- * For factorization, I is N, S is {p,q} and C involves verifying that pq = N

- * Boolean variables x,y,z,...
- * |x negation of x, x || y x or y, x & y x and y
- Clause formula C of the form

(x || !y || z || || w)

- Disjunction of literals (variables, negated variables)
- Formula conjunction of clauses

C & D & ... & E

* Assign suitable values {True,False} to x,y,z,... so that the formula evaluates to true

(x || y || z) & (x || !y) & (y || !z) & (!x || !y || !z)

- * x = True, y = True, z = False makes this true
- (x || y || z) & (x || !y) & (y || !z) & (z || !x) & (!x || !y || !z)
- Now there is no satisfying assignment

- * Generating a solution
 - * Try each possible assignment to x,y,z,...
 - * N variables 2^N possible assignments
 - Is there a better algorithm? Not known
- * Checking a solution
 - Given formula F and valuation V(x) for each x, substitute into formula and evaluate

- Input format is important
- * Suppose a clause is a conjunction of literals ...

(x & !y & z & & w)

* ... and a formula is a disjunction of clauses

C || D || ... || E

- * Each clause forces a unique valuation
- * Try each clause in sequence

Travelling salesman

- A network of cities with distances between each pair
 - * A complete graph G = (V,E) with edge weights
- Find the shortest tour that visits each city exactly once
 - Simple cycle x,y,z,...,x visiting all vertices, of minimum cost

Travelling salesman

- * Designing a checking algorithm
- * Checking algorithm must give a yes/no answer
- Given a graph G and a proposed solution S we can
 - * Verify that S is a cycle
 - * Compute its cost
 - * How to check that S is the least cost cycle?

Travelling salesman

- Transform the problem
- * Is there a tour with cost at most K?
- * Now, given a solution S, we can check it
- * For the original problem, cost is at most the sum of all the edge weights in the graph
- Find optimum K test different values using binary search

Independent set

- u,v are independent if there is no edge (u,v)
- U is an independent set if each pair {u,v} in U is independent
 - Constitute a neutral committee where none of the members know each other
- Find the largest independent set in a given graph
- * Checking version: Is there an independent set of size K?

Independent set

- u,v are independent if there is no edge (u,v)
- U is an independent set if each pair {u,v} in U is independent
 - Constitute a neutral committee where none of the members know each other
- Find the largest independent set in a given graph
- * Checking version: Is there an independent set of size K?

Vertex cover

- Node u covers every edge (u,v) incident on u
- * U is a vertex cover if each edge in the graph is covered by some vertex in U
 - Position surveillance cameras at intersections to watch all roads
- Find the smallest vertex cover in a given graph
- * Checking version: Is there an vertex cover of size K?

Vertex cover

- Node u covers every edge (u,v) incident on u
- * U is a vertex cover if each edge in the graph is covered by some vertex in U
 - Position surveillance cameras at intersections to watch all roads
- Find the smallest vertex cover in a given graph
- * Checking version: Is there an vertex cover of size K?

Connecting independent set and vertex cover

U is an independent set of size K iff
V-U is a vertex cover of size N-K

Every edge (u,v) has at most one end point in U, so at least one end point in V-U

* (⇐)

* (⇒)

For any edge (u,v), at least one endpoint in V-U, so no edges (u,v) within U

Connecting independent set and vertex cover

U is an independent set of size K iff
V-U is a vertex cover of size N-K

Every edge (u,v) has at most one end point in U, so at least one end point in V-U

* (⇐)

* (⇒)

For any edge (u,v), at least one endpoint in V-U, so no edges (u,v) within U

Connecting independent set and vertex cover

U is an independent set of size K iff
V-U is a vertex cover of size N-K

Every edge (u,v) has at most one end point in U, so at least one end point in V-U

* (⇐)

* (⇒)

For any edge (u,v), at least one endpoint in V-U, so no edges (u,v) within U

Reductions

- Independent set and vertex cover reduce to each other
- * Recall: if A reduces to B and A is intractable, so is B
- * Many pairs of checkable problems are inter-reducible
 - * All "equally" hard

