NPTEL MOOC, JAN-FEB 2015 Week 8, Module 5

DESIGN AND ANALYSIS OF ALGORITHMS

Reductions

MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE http://www.cmi.ac.in/~madhavan

Bipartite Matching

- Each instructor is willing to teach a set of courses
- * Find an allocation so that
 - Each course is taught
 by a single instructor
 - Each instructor teaches only one course, which he/she is willing to teach

Bipartite Matching

Bipartite Matching

- * Add a source and sink
- * All edge capacities are 1
- * Find a maximum flow from s to t!

- * We want to solve problem A
- * We know how to solve problem B
- * Convert input for A into input for B
- Interpret output of B as output of A

Algorithm for A

- * A reduces to B
- * Can transfer efficient solution from B to A
 - * But preprocessing and postprocessing must also be efficient!
 - * Typically, both should be polynomial time

Algorithm for A

- * Bipartite matching reduces to max flow
- * Max flow reduces to LP
 - Number of variables, constraints is linear in the size of the graph

- Reverse interpretation is also useful
- If A is known to be intractable and A reduces to B, then B must also be intractable
 - * Otherwise, solution for B will yield solution for A

Big hammers

- * LP and network flows are powerful tools
- Many algorithmic problems can be reduced to them
- Efficient, off-the-shelf implementations are available
- Useful to understand what can (and cannot) be modelled in terms of LP and flows