NPTEL MOOC, JAN-FEB 2015 Week 7, Module 6

DESIGN AND ANALYSIS OF ALGORITHMS

Matrix Multiplication

MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE http://www.cmi.ac.in/~madhavan

- To multiply matrices A and B, need compatible dimensions
 - * A of dimension m x n, B of dimension n x p
 - * AB has dimension mp
- * Each entry in AB take O(n) steps to compute
 - * AB[i,j] is A[i,1]B[1,j] + A[i,2]B[2,j] + ... + A[i,n]B[n,j]
- * Overall, computing AB is O(mnp)

Matrix multiplication is associative

*
$$ABC = (AB)C = A(BC)$$

- * Bracketing does not change the answer ...
- * ... but can affect the complexity of computing it!

- * Suppose dimensions are A[1,100], B[100,1], C[1,100]
 - * Computing A(BC)
 - * BC is [100,100], 100 x 1 x 100 = 10000 steps
 - * A(BC) is [1,100],1 x 100 x 100 = 10000 steps
 - * Computing (AB)C
 - * AB is [1,1], 1 x 100 x 1 = 100 steps
 - * (AB)C is [1,100], 1 x 1 x 100 = 100 steps
- * A(BC) takes 20000 steps, (AB)C takes 200 steps!

- Given matrices M₁, M₂,..., M_n of dimensions [r₁,c₁],
 [r₂,c₂], ..., [r_n,c_n]
 - * Dimensions match, so M₁ x M₂ x ... x M_n can be computed
 - * $c_i = r_{i+1}$ for $1 \le i < n$
- * Find an optimal order to compute the product
 - * That is, bracket the expression optimally

Inductive structure

- * Product to be computed: M₁ x M₂ x ... x M_n
- * Final step would have combined two subproducts
 - * $(M_1 \times M_2 \times ... \times M_k) \times (M_{k+1} \times M_{k+2} \times ... \times M_n)$, for some $1 \le k < n$
 - * First factor has dimension (r₁,c_k), second (r_{k+1},c_n)
 - Final multiplication step costs O(r₁C_kC_n)
 - * Add cost of computing the two factors

Subproblems

- Final step is
 (M₁ x M₂ x ... x M_k) x (M_{k+1} x M_{k+2} x ... x M_n)
- * Subproblems are $(M_1 \times M_2 \times ... \times M_k)$ and $(M_{k+1} \times M_{k+2} \times ... \times M_n)$
- * Total cost is Cost(M₁ x M₂ x ... x M_k) + Cost(M_{k+1} x M_{k+2} x ... x M_n) + r₁C_kC_n
- Which k should we choose?
- * No idea! Try them all and choose the minimum!

Inductive formulation

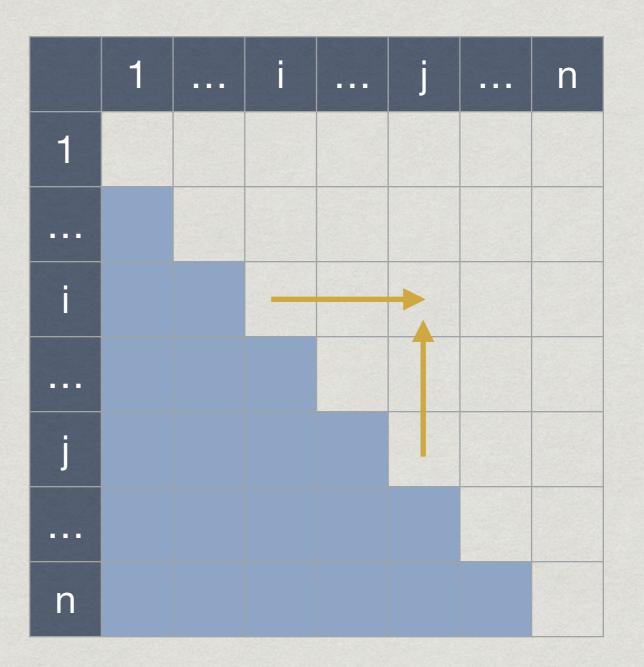
* Cost(M₁ x M₂ x ...x M_n) = minimum value, for $1 \le k < n$, of Cost(M₁ x M₂ x ...x M_k) + Cost(M_{k+1} x M_{k+2} x ...x M_n) + r_{1CkCn}

When we compute Cost(M₁ x M₂ x ... x M_k) we will get subproblems of the form M_j x M_{j+1} x ... x M_k

In general ...

* Cost(M_i x M_{i+1} x ... x M_j) = minimum value, for i \leq k < j, of Cost(M_i x M_{i+1} x ... x M_k) + Cost(M_{k+1} x M_{k+2} x ... x M_j) + r_iC_kC_j

Write Cost(i,j) to denote Cost(Mi x Mi+1 x ... x Mj)


```
Final equation
```

* Cost(i,i) = 0 — No multiplication to be done

- * $Cost(i,j) = min \text{ over } i \le k < j$ [$Cost(i,k) + Cost(k+1,j) + r_iC_kC_j$]
- * Note that we only require Cost(i,j) when $i \leq j$

Subproblem dependency

- * Cost(i,j) depends on Cost(i,k), Cost(k+1,j) for all $i \le k < j$
- Can have O(n)
 dependent values,
 unlike LCS, LCW, ED
- Start with main diagonal and fill matrix by columns, bottom to top, left to right

MMCost(M1,...,Mn), DP

function MMC(R,C)
R[1..n],C[1..n] have row/column sizes

```
for r = 1,...,n
MMC[r][r] = 0
```

Complexity

- * As with LCS, ED, we to fill an O(n²) size table
- However, filling MMC[i][j] could require examining O(n) intermediate values
- * Hence, overall complexity is O(n³)