DESIGN AND ANALYSIS
OF ALGORITHMS

Matrix Multiplication

http://www.cmi.ac.in/~madhavan

Multiplying matrices

* To multiply matrices A and B, need compatible
dimensions

* A of dimension m x n, B of dimension n x p
* AB has dimension mp
* Each entry in AB take O(n) steps to compute
* ABJi,j] is A[i,1]B[1,j] + Al[i,2]B[2,]] +...+ Ali,n]B[n,j]

* QOverall, computing AB is O(mnp)

Multiplying matrices

* Matrix multiplication Is associative
* ABC = (AB)C = A(BC)
* Bracketing does not change the answer ...

* ... but can affect the complexity of computing it!

Multiplying matrices
* Suppose dimensions are A[1,100], B[100,1], C[1,100]
* Computing A(BC)
* BC is [100,100], 100 x 1 x 100 = 10000 steps
* ABC) is [1,100],1 x 100 x 100 = 10000 steps
* Computing (AB)C
* ABis[1,1], 1 x 100 x 1 = 100 steps
* (AB)C is [1,100], 1 x 1 x 100 = 100 steps
* A(BC) takes 20000 steps, (AB)C takes 200 steps!

Multiplying matrices

* Given matrices M+, My, ..., Mn of dimensions [r1,c1],
[rz,CQ], e [rn,cn]

* Dimensions match, so M1 x M2 x ...x Mn can be
computed

* Ci=hvforl=si<n
* Find an optimal order to compute the product

* That Is, bracket the expression optimally

Inductive structure

* Product to be computed: M1 x M2 X ...X Mn
* Final step would have combined two subproducts

* (M1 X M2 X ...X Mk) X (Mk+1 X Mk+2 X ...X Mp), for
some 1 <k<n

* First factor has dimension (r1,ck), second (rk+1,Cn)
* Final multiplication step costs O(rickcn)

* Add cost of computing the two factors

Subproblems
* Final step is
(M1 X M2 X ...X Mk) X (Mk+1 X Mks2 X ...X M)

* Subproblems are (M1 x M2 x ...x M) and
(Mk+1 X Mks2 X ...X Mp)

* Total cost is Cost(M1 x M2 X ...x Mk) +
Cost(Mk+1 X Mks2 X ...X Mn) + riCkCn

* \Which k should we choose?

* No idea! Try them all and choose the minimum!

INnductive formulation

* Cost(M1 x M2 X ...X Mp) =
minimum value, for 1 < k < n, of
Cost(M1 x M2 x ...x M) +
Cost(Mk+1 X Mks2 X ...X Mp) +

'1CkCn

* WWhen we compute Cost(M1 x M2 x ...x M) we will
get subproblems of the form M;x Mj+1 X ...X Mk

INn general ...

* Cost(Mix Miy1 X ...x M)) =
minimum value, fori < Kk < |, of
Cost(Mi X Mi+1 X ...X M) +
Cost(Mk:+1 X M2 X ...X M) +

liCkC;j

* Write Cost(i,j) to denote Cost(Mix Mi1 X ...x M))

Final equation

* Cost(i,) =0 — No multiplication to be done

* Cost(i,j) = minoveri<k <]

[Cost(i,k) + Cost(k+1,j) + rickci]

* Note that we only require Cost(i,)) when i < |

Subproblem dependency

* Cost(i,]) depends on
Cost(i,k), Cost(k+1,))
foralli < k <

* Can have O(n)
dependent values,

unlike LCS, LCW, ED

* Start with main
diagonal and fill matrix
by columns, bottom to
top, left to right

MMCost(M1,...,Mn), DP

function MMC(R,O)
R[1..n],C[1..n] have row/column sizes

toF £ = 1 7
MMC[r][r] = 0

for. c = 2 5 el
tor P = ¢ =1 ... |
MMC[r][c] = 1nfinity
for lk = r P&l 1
subprob = MMC[r][k] + MMC[k][c] +
R[r]C[k]C[c]
1f (subprob < MMC[r][c])
MMC[r][c] = subprob

Complexity

* As with LCS, ED, we to fill an O(n?) size table

* However, filling MMCIi][j] could require examining
O(n) intermediate values

* Hence, overall complexity is O(n?)

