
DESIGN AND ANALYSIS  
OF ALGORITHMS
Matrix Multiplication

MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE
http://www.cmi.ac.in/~madhavan

NPTEL MOOC,JAN-FEB 2015
Week 7, Module 6

http://www.cmi.ac.in/~madhavan

Multiplying matrices
To multiply matrices A and B, need compatible
dimensions

A of dimension m x n, B of dimension n x p

AB has dimension mp

Each entry in AB take O(n) steps to compute

AB[i,j] is A[i,1]B[1,j] + A[i,2]B[2,j] +…+ A[i,n]B[n,j]

Overall, computing AB is O(mnp)

Multiplying matrices

Matrix multiplication is associative

ABC = (AB)C = A(BC)

Bracketing does not change the answer …

… but can affect the complexity of computing it!

Multiplying matrices
Suppose dimensions are A[1,100], B[100,1], C[1,100]

Computing A(BC)

BC is [100,100], 100 x 1 x 100 = 10000 steps

A(BC) is [1,100],1 x 100 x 100 = 10000 steps

Computing (AB)C

AB is [1,1], 1 x 100 x 1 = 100 steps

(AB)C is [1,100], 1 x 1 x 100 = 100 steps

A(BC) takes 20000 steps, (AB)C takes 200 steps!

Multiplying matrices
Given matrices M1, M2,…, Mn of dimensions [r1,c1],
[r2,c2], …, [rn,cn]

Dimensions match, so M1 x M2 x …x Mn can be
computed

ci = ri+1 for 1 ≤ i < n

Find an optimal order to compute the product

That is, bracket the expression optimally

Inductive structure
Product to be computed: M1 x M2 x …x Mn

Final step would have combined two subproducts

(M1 x M2 x …x Mk) x (Mk+1 x Mk+2 x …x Mn), for
some 1 ≤ k < n

First factor has dimension (r1,ck), second (rk+1,cn)

Final multiplication step costs O(r1ckcn)

Add cost of computing the two factors

Subproblems
Final step is 
(M1 x M2 x …x Mk) x (Mk+1 x Mk+2 x …x Mn)

Subproblems are (M1 x M2 x …x Mk) and 
(Mk+1 x Mk+2 x …x Mn)

Total cost is Cost(M1 x M2 x …x Mk) +  
Cost(Mk+1 x Mk+2 x …x Mn) + r1ckcn

Which k should we choose?

No idea! Try them all and choose the minimum!

Inductive formulation
Cost(M1 x M2 x …x Mn) = 
minimum value, for 1 ≤ k < n, of 
 Cost(M1 x M2 x …x Mk) +  
 Cost(Mk+1 x Mk+2 x …x Mn) + 
 r1ckcn

When we compute Cost(M1 x M2 x …x Mk) we will
get subproblems of the form Mj x Mj+1 x …x Mk

In general …

Cost(Mi x Mi+1 x …x Mj) = 
minimum value, for i ≤ k < j, of 
 Cost(Mi x Mi+1 x …x Mk) +  
 Cost(Mk+1 x Mk+2 x …x Mj) + 
 rickcj

Write Cost(i,j) to denote Cost(Mi x Mi+1 x …x Mj)

Final equation

Cost(i,i) = 0 — No multiplication to be done

Cost(i,j) = min over i ≤ k < j  
 [Cost(i,k) + Cost(k+1,j) + rickcj]

Note that we only require Cost(i,j) when i ≤ j

Subproblem dependency
1 … i … j … n

1

…

i

…

j

…

n

Cost(i,j) depends on
Cost(i,k), Cost(k+1,j)
for all i ≤ k < j

Can have O(n)
dependent values,
unlike LCS, LCW, ED

Start with main
diagonal and fill matrix
by columns, bottom to
top, left to right

MMCost(M1,…,Mn), DP
function MMC(R,C)  
R[1..n],C[1..n] have row/column sizes

for r = 1,…,n  
 MMC[r][r] = 0

for c = 2,3,…,n+1  
 for r = c,c-1,…,1  
 MMC[r][c] = infinity  
 for k = r,r+1,…,c-1  
 subprob = MMC[r][k] + MMC[k][c] +  
 R[r]C[k]C[c]  
 if (subprob < MMC[r][c])  
 MMC[r][c] = subprob

Complexity

As with LCS, ED, we to fill an O(n2) size table

However, filling MMC[i][j] could require examining
O(n) intermediate values

Hence, overall complexity is O(n3)

