DESIGN AND ANALYSIS
OF ALGORITHMS

Edit Distance

http://www.cmi.ac.in/~madhavan

Document similarity

* “The students were able to appreciate the concept
optimal substructure property and its use in designing
algorithms”

* “The lecture taught the students to appreciate how the
concept of optimal substructures can be used in
designing algorithms”

* “The lecture taught the students were-able to appreciate
how the concept of optimal substructures preperty cand
ibse used in designing algorithms”

* 28 characters inserted, 18 deleted, 2 substituted

Edit distance

* Minimum number of editing operations needed to
transform one document to the other

* |nsert a character
* Delete a character
* Substitute a character by another one

* |In our example,
28 characters inserted, 18 deleted, 2 substituted

* Edit distance Is at most 48

Edit distance

* Also called Levenshtein distance
* First proposed by Vladimir Levenshtein
* Applications

* Suggest spelling corrections in word processor,
search engine queries

* Another way of comparing genetic similarity
across species

Edit distance and LCS

* | ongest common subsequence of u and v

* \What remains after minimum number of deletes to
make them equal

* Deleting a letter in u equivalent to inserting it in v
* “secret”, “bisect” — LCS is “sect”

* delete “r”, “e” In “secret”, “b”, “I” In “bisect”

* delete “r”, “e” then insert “b”, “I” In “secret”

* | CS is equivalent to edit distance without substitution

INnductive structure for
edit distance

di di+1 dj+2 i rdmel - dm
DI B bio o P b

U
Vv

* Recall LCS

* |f ai = b, LCS(i,)) = 1 + LCS(i+1,j+1)
* |If ai # bj, LCS(i,)) = max(LCS(i+1,)), LCS(i,j+1))

* Boundary condition when one of the words is
empty

Edit distance...

di di+1 dj+2 s chmet - wdm
bi B - B Dt Db

u
Vv

* Aim Is to transform u into v

* If ai = b;, ED(i,j) = ED(i+1,j+1) — nothing to be done at
(ai’bj)

* |If a; # bj, can do one of three things
* Substitute a; by b; : 1 + ED(i+1,j+1)
* Delete a;: 1 + ED(i+1,))
* Insert b;before a;: 1 + ED(i,j+1)

* [ake the minimum of these

Inductive structure

di di+1 di+2 Cre e amet L eelm
bi b b i bat Da

u
\Y

* ED(i,j) stands for ED(aiai+1...am, bjbj+1...bn)

* If ai = by, ED(i,)) = ED(i+1,j+1)

* |f a; # b, LCS(i,]) =
1 + min(ED(i+1,j+1),ED(i+1,j), ED(i,j+1))

* As with LCS/LCW, extend positions to m+1, n+1
* ED(m+1,j) = n-j+1 for all j # Insert bjbj;1...brin u

* ED(i,n+1) = m-i+1 for all i, # Insert aiai;1...amin v

Subproblem dependency

* Like LCS, ED(i,))
depends on
ED(i+1,j+1), ED(i+1,))

and ED(j,j+1)

* Dependencies for

ED(m,n) are known

* Start at ED(m,n) and
fill by row, column or

diagonal

Subproblem dependency

* Like LCS, ED(i,j)
depends on
ED(i+1,j+1), ED(i+1,))

and ED(j,j+1)

* Dependencies for

ED(m,n) are known

* Start at ED(m,n) and
fill by row, column or

diagonal

Subproblem dependency

* Like LCS, ED(i,j)
depends on
ED(i+1,j+1), ED(i+1,))

and ED(j,j+1)

* Dependencies for

ED(m,n) are known

* Start at ED(m,n) and
fill by row, column or

diagonal

Subproblem dependency

* Like LCS, ED(i,j)
depends on
ED(i+1,j+1), ED(i+1,))

and ED(j,j+1)

* Dependencies for

ED(m,n) are known

* Start at ED(m,n) and
fill by row, column or

diagonal

- O == N W A O g

Subproblem dependency

* Like LCS, ED(i,j)
depends on
ED(i+1,j+1), ED(i+1,))

and ED(j,j+1)

* Dependencies for

ED(m,n) are known

* Start at ED(m,n) and
fill by row, column or

N (= =k N B O R

diagonal

- O == N W A O g

Subproblem dependency

* Like LCS, ED(i,j)
depends on
ED(i+1,j+1), ED(i+1,))

W

and ED(j,j+1)

* Dependencies for

ED(m,n) are known

* Start at ED(m,n) and
fill by row, column or

WINNDN W O
N (= =k N B O R

diagonal

- O == N W A O g

Subproblem dependency

* Like LCS, ED(i,j)
depends on
ED(i+1,j+1), ED(i+1,))

W

and ED(j,j+1)

* Dependencies for

ED(m,n) are known

* Start at ED(m,n) and
fill by row, column or

=2 W0 N W A O Bl
WINNDN W O
N (= =k N B O R

diagonal

- O == N W A O g

Subproblem dependency

* Like LCS, ED(i,j)
depends on
ED(i+1,j+1), ED(i+1,))

Al
(V)

and ED(j,j+1)

* Dependencies for

ED(m,n) are known

* Start at ED(m,n) and
fill by row, column or

Gl W N W A~ O
=W N W W B O EelEy
W NN DN W SO
N (=t = N QO B O RO

diagonal

- O == N W A O g

Subproblem dependency

* Like LCS, ED(i,))
depends on
ED(@+1,j+1), ED(i+1,))
and ED(i,j+1)

Al
(V)

* Dependencies for
ED(m,n) are known

* Start at ED(m,n) and
fill by row, column or
diagonal

D1 A WN W S K
Gl W N W A~ O
=W N W W B O EelEy
W NN DN W SO
N (=t = N QO B O RO
—_t O = N W B O B e

Recovering the solution

* [race back the path

* [ransforming “secret”
to “bisect”

* Del “b” : (0,0)—(1,0)
* Del “i” : (1,0)~(2,0)
* Ins “r” : (5,3)—(5,4)
* [ns “e”: (5,4)—(5,5)

Babe o2 oo

s.felelrle

4 95 9|95 9 6
3 4 4|44 o
A3 3 3 3 4
3 3/3|2 2 3
4 3 & 2 1 2
0|4 3| 21 1
65 4 3 2 0

ED(u,v), DP

function EDCu,v) # u[@..m],

v[O. .n]

tor = V1. - mel & FDIrvlEnsl]) =-m-p+1 }

torec = 0.1 med - + FRfmel el = pn=crl %

for € = n h-LkE. 10
forer =mm=1,..0

if (ulrl] = vic])

ED[r][c] = ED[r+1][c+1]

else
EDfrllc] = 1 + minCED
ED
ED

return(ED[@][Q])

r+l1][c+1],
serLlEc |

rilerl])

Complexity

* Again O(mn) using dynamic programming (or
memoization)

* Need to fill an O(mn) size table

* Each table entry takes constant time to compute

Space complexity

* For LCW, LCS, ED
* Need to fill an O(mn) size table
* Do we need to store the entire table?

* Filling column by column, only need next column
and current column

* Or next row and current row

* Reduce space to O(n), assuming m = n

