
DESIGN AND ANALYSIS  
OF ALGORITHMS
Edit Distance

MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE
http://www.cmi.ac.in/~madhavan

NPTEL MOOC,JAN-FEB 2015
Week 7, Module 5

http://www.cmi.ac.in/~madhavan

Document similarity
“The students were able to appreciate the concept
optimal substructure property and its use in designing
algorithms”

“The lecture taught the students to appreciate how the
concept of optimal substructures can be used in
designing algorithms”

“The lecture taught the students were able to appreciate
how the concept of optimal substructures property cand
itbse used in designing algorithms”

28 characters inserted, 18 deleted, 2 substituted

Edit distance
Minimum number of editing operations needed to
transform one document to the other

Insert a character

Delete a character

Substitute a character by another one

In our example,  
28 characters inserted, 18 deleted, 2 substituted

Edit distance is at most 48

Edit distance
Also called Levenshtein distance

First proposed by Vladimir Levenshtein

Applications

Suggest spelling corrections in word processor,
search engine queries

Another way of comparing genetic similarity
across species

Edit distance and LCS
Longest common subsequence of u and v

What remains after minimum number of deletes to
make them equal

Deleting a letter in u equivalent to inserting it in v

“secret”, “bisect” — LCS is “sect”

delete “r”, “e” in “secret”, “b”, “i” in “bisect”

delete “r”, “e” then insert “b”, “i” in “secret”

LCS is equivalent to edit distance without substitution

Inductive structure for  
edit distance

Recall LCS

If ai = bj, LCS(i,j) = 1 + LCS(i+1,j+1)

If ai ≠ bj, LCS(i,j) = max(LCS(i+1,j), LCS(i,j+1))

Boundary condition when one of the words is
empty

u ai ai+1 ai+2 … … am-1 am

v bj bj+1 bj+2 … bn-1 bn

Edit distance…

Aim is to transform u into v

If ai = bj, ED(i,j) = ED(i+1,j+1) — nothing to be done at
(ai,bj)

If ai ≠ bj, can do one of three things

Substitute ai by bj : 1 + ED(i+1,j+1)

Delete ai : 1 + ED(i+1,j)

Insert bj before ai: 1 + ED(i,j+1)

Take the minimum of these

u ai ai+1 ai+2 … … am-1 am

v bj bj+1 bj+2 … bn-1 bn

Inductive structure

ED(i,j) stands for ED(aiai+1…am, bjbj+1…bn)

If ai = bj, ED(i,j) = ED(i+1,j+1)

If ai ≠ bj, LCS(i,j) = 
 1 + min(ED(i+1,j+1),ED(i+1,j), ED(i,j+1))

As with LCS/LCW, extend positions to m+1, n+1

ED(m+1,j) = n-j+1 for all j # Insert bjbj+1…bn in u

ED(i,n+1) = m-i+1 for all i, # Insert aiai+1…amin v

u ai ai+1 ai+2 … … am-1 am

v bj bj+1 bj+2 … bn-1 bn

Subproblem dependency
0 1 2 3 4 5 6
s e c r e t •

0 b
1 i
2 s
3 e
4 c
5 t
6 •

Like LCS, ED(i,j)
depends on 
ED(i+1,j+1), ED(i+1,j)
and ED(i,j+1)

Dependencies for
ED(m,n) are known

Start at ED(m,n) and
fill by row, column or
diagonal

Subproblem dependency
0 1 2 3 4 5 6
s e c r e t •

0 b
1 i
2 s
3 e
4 c
5 t
6 •

Like LCS, ED(i,j)
depends on 
ED(i+1,j+1), ED(i+1,j)
and ED(i,j+1)

Dependencies for
ED(m,n) are known

Start at ED(m,n) and
fill by row, column or
diagonal

Subproblem dependency
0 1 2 3 4 5 6
s e c r e t •

0 b
1 i
2 s
3 e
4 c
5 t
6 •

Like LCS, ED(i,j)
depends on 
ED(i+1,j+1), ED(i+1,j)
and ED(i,j+1)

Dependencies for
ED(m,n) are known

Start at ED(m,n) and
fill by row, column or
diagonal 0

1
2
3
4
5
6

6 5 4 3 2 1

Subproblem dependency
0 1 2 3 4 5 6
s e c r e t •

0 b
1 i
2 s
3 e
4 c
5 t
6 •

Like LCS, ED(i,j)
depends on 
ED(i+1,j+1), ED(i+1,j)
and ED(i,j+1)

Dependencies for
ED(m,n) are known

Start at ED(m,n) and
fill by row, column or
diagonal 0

1
2
3
4
5
6

6 5 4 3 2 1
0
1
2
3
4
5

Subproblem dependency
0 1 2 3 4 5 6
s e c r e t •

0 b
1 i
2 s
3 e
4 c
5 t
6 •

Like LCS, ED(i,j)
depends on 
ED(i+1,j+1), ED(i+1,j)
and ED(i,j+1)

Dependencies for
ED(m,n) are known

Start at ED(m,n) and
fill by row, column or
diagonal 0

1
2
3
4
5
6

6 5 4 3 2 1
0
1
2
3
4
5

1
1
2
3
4
5

Subproblem dependency
0 1 2 3 4 5 6
s e c r e t •

0 b
1 i
2 s
3 e
4 c
5 t
6 •

Like LCS, ED(i,j)
depends on 
ED(i+1,j+1), ED(i+1,j)
and ED(i,j+1)

Dependencies for
ED(m,n) are known

Start at ED(m,n) and
fill by row, column or
diagonal 0

1
2
3
4
5
6

6 5 4 3 2 1
0
1
2
3
4
5

1
1
2
3
4
5

2
2
2
3
4
5

Subproblem dependency
0 1 2 3 4 5 6
s e c r e t •

0 b
1 i
2 s
3 e
4 c
5 t
6 •

Like LCS, ED(i,j)
depends on 
ED(i+1,j+1), ED(i+1,j)
and ED(i,j+1)

Dependencies for
ED(m,n) are known

Start at ED(m,n) and
fill by row, column or
diagonal 0

1
2
3
4
5
6

6 5 4 3 2 1
0
1
2
3
4
5

1
1
2
3
4
5

2
2
2
3
4
5

3
2
3
3
4
5

Subproblem dependency
0 1 2 3 4 5 6
s e c r e t •

0 b
1 i
2 s
3 e
4 c
5 t
6 •

Like LCS, ED(i,j)
depends on 
ED(i+1,j+1), ED(i+1,j)
and ED(i,j+1)

Dependencies for
ED(m,n) are known

Start at ED(m,n) and
fill by row, column or
diagonal 0

1
2
3
4
5
6

6 5 4 3 2 1
0
1
2
3
4
5

1
1
2
3
4
5

2
2
2
3
4
5

3
2
3
3
4
5

4
3
2
3
4
5

Subproblem dependency
0 1 2 3 4 5 6
s e c r e t •

0 b
1 i
2 s
3 e
4 c
5 t
6 •

Like LCS, ED(i,j)
depends on 
ED(i+1,j+1), ED(i+1,j)
and ED(i,j+1)

Dependencies for
ED(m,n) are known

Start at ED(m,n) and
fill by row, column or
diagonal 0

1
2
3
4
5
6

6 5 4 3 2 1
0
1
2
3
4
5

1
1
2
3
4
5

2
2
2
3
4
5

3
2
3
3
4
5

4
3
2
3
4
5

5
4
3
2
3
4

Recovering the solution
0 1 2 3 4 5 6
s e c r e t •

0 b
1 i
2 s
3 e
4 c
5 t
6 •

Trace back the path

Transforming “secret”
to “bisect”

Del “b” : (0,0)→(1,0)

Del “i” : (1,0)→(2,0)

Ins “r” : (5,3)→(5,4)

Ins “e”: (5,4)→(5,5) 0
1
2
3
4
5
6

6 5 4 3 2 1
0
1
2
3
4
5

1
1
2
3
4
5

2
2
2
3
4
5

3
2
3
3
4
5

4
3
2
3
4
5

5
4
3
2
3
4

ED(u,v), DP
function ED(u,v) # u[0..m], v[0..n]

for r = 0,1,…,m+1 { ED[r][n+1] = m-r+1 }

for c = 0,1,…,m+1 { ED[m+1][c] = n-c+1 }

for c = n,n-1,…,0  
 for r = m,m-1,…0  
 if (u[r] == v[c])  
 ED[r][c] = ED[r+1][c+1]  
 else  
 ED[r][c] = 1 + min(ED[r+1][c+1],  
 ED[r+1][c],  
 ED[r][c+1])

return(ED[0][0])

Complexity

Again O(mn) using dynamic programming (or
memoization)

Need to fill an O(mn) size table

Each table entry takes constant time to compute

Space complexity
For LCW, LCS, ED

Need to fill an O(mn) size table

Do we need to store the entire table?

Filling column by column, only need next column
and current column

Or next row and current row

Reduce space to O(n), assuming m ≥ n

