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Longest common subword

Given two strings, find the (length of the) longest 
common subword


“secret”, “secretary” — “secret”, length 6


“bisect”, “trisect” — “sect”, length 4


“bisect”, “secret” — “sec”, length 3


“director”, “secretary” —“ec”, “re”, length 2



More formally …

Let u = a0a1…am and v = b0b1…bn  be two strings


If we can find i, j such that  
aiai+1…ai+k-1 = bjbj+1…bj+k-1, u and v have a 
common subword of length k


Aim is to find the length of the longest common 
subword of u and v



Brute force
Let u = a0a1…am and v = b0b1…bn  


Try every pair of starting positions i in u, j in v


Match (ai, bi), (ai+1,bi+1),… as far as possible


Keep track of the length of the longest match


Assuming m > n, this is O(mn2)


mn pairs of positions


From each starting point, scan can be O(n)



Inductive structure
Let u = a0a1…am and v = b0b1…bn  


aiai+1…ai+k-1 = bjbj+1…bj+k-1 is a common subword of 
length k at (i,j) iff ai+1…ai+k-1 = bj+1…bj+k-1 is a common 
subword of length k-1 at (i+1,j+1)


LCW(i,j): length of the longest common subword 
starting at ai and bj


If ai ≠ bj, LCW(i,j) is 0, otherwise 1+LCW(i+1,j+1)


Boundary condition: when we have reached the 
end of one of the words



Inductive structure

Consider positions 0 to m+1 in u, 0 to n+1 in v


m+1, n+1 means we have reached the end of 
the word


LCW(m+1,j) = 0 for all j


LCW(i,n+1) = 0 for all i


LCW(i,j) = 0, if ai ≠ bj, 
                1+ LCW(i+1,j+1), if ai = bj
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Reading off the solution
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entry


LCW(2,0) = 3


Read off the actual 
subword diagonally



Reading off the solution
0 1 2 3 4 5 6
s e c r e t •

0 b
1 i
2 s
3 e
4 c
5 t
6 • 0 0 0 0 00 0

0
0
0
0
0
0

1
0
0
0
0
0

1
0
0
0

0
0

0
0
0
0
0
0

0
1

0
0
0

0
0
2
0
0
0

0
0
0
3
0
0

0

Find (i,j) with largest 
entry


LCW(2,0) = 3


Read off the actual 
subword diagonally



LCW(u,v), DP
function LCW(u,v) # u[0..m], v[0..n]

for r = 0,1,…,m+1  { LCW[r][n+1] = 0 } # r for row

for c = 0,1,…,m+1  { LCW[m+1][c] = 0 } # c for col

maxLCW = 0

for c = n,n-1,…,0  
  for r = m,m-1,…0  
    if (u[r] == v[c])  
      LCW[r][c] = 1 + LCW[r+1][c+1]  
    else  
      LCW[r][c] = 0  
    if (LCW[r][c] > maxLCW)  
      maxLCW = LCW[r][c]

return(maxLCW)



Complexity

Recall that the brute force approach was O(mn2)


The inductive solution is O(mn) if we use dynamic 
programming (or memoization)


Need to fill an O(mn) size table


Each table entry takes constant time to compute



Longest common 
subsequence

Subsequence: can drop some letters in between


Given two strings, find the (length of the) longest 
common subsequence


“secret”, “secretary” — “secret”, length 6


“bisect”, “trisect” — “isect”, length 5


“bisect”, “secret” — “sect”, length 4


“director”, “secretary” —“ectr”, “retr”, length 4
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LCS is longest path 
we can find between 
non-zero LCW 
entries, moving right 
and down



Applications
Analyzing genes


DNA is a long string over A,T,G,C


Two species are closer if their DNA has longer 
common subsequence


UNIX diff command


Compares text files


Find longest matching subsequence of lines



Inductive structure

If a0 = b0,  

LCS(a0a1…am, b0b1…bn) = 1 + LCS(a1a2…am, b1b2…bn)


Can force (a0,b0) to be part of LCS


If not, a0 and b0 cannot both be part of LCS


Not sure which one to drop


Solve both subproblems LCS(a1a2…am, b0b1…bn) and  
LCS(a0a1…am,b1b2…bn) and take the maximum

u a0 a1 a2 … … am-1 am

v b0 b1 b2 … bn-1 bn



Inductive structure

LCS(i,j) stands for LCS(aiai+1…am, bjbj+1…bn) 


If ai = bj, LCS(i,j) = 1 + LCS(i+1,j+1)


If ai ≠ bj, LCS(i,j) = max(LCS(i+1,j), LCS(i,j+1))


As with LCW, extend positions to m+1, n+1


LCS(m+1,j) = 0 for all j


LCS(i,n+1) = 0 for all i

u ai ai+1 ai+2 … … am-1 am

v bj bj+1 bj+2 … bn-1 bn
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Recovering the sequence
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LCS(u,v), DP
function LCS(u,v) # u[0..m], v[0..n]

for r = 0,1,…,m+1  { LCS[r][n+1] = 0 }

for c = 0,1,…,m+1  { LCS[m+1][c] = 0 }

for c = n,n-1,…,0  
  for r = m,m-1,…0  
    if (u[r] == v[c])  
      LCS[r][c] = 1 + LCS[r+1][c+1]  
    else  
      LCS[r][c] = max(LCS[r+1][c],  
                      LCS[r][c+1])

return(LCS[0][0])



Complexity

Again O(mn) using dynamic programming (or 
memoization)


Need to fill an O(mn) size table


Each table entry takes constant time to compute


