DESIGN AND ANALYSIS
OF ALGORITHMS

Common Subwords and Subsequences

http://www.cmi.ac.in/~madhavan

| ongest common subword

* Given two strings, find the (length of the) longest
common subword

* “secret”, “secretary” — “secret”, length 6
* “bisect”, “trisect” — “sect”, length 4
* “pbisect”, “secret” — “sec”, length 3

* “director”, “secretary” —"ec”, “re”, length 2

Vore formally ...

* Let u=apai...amand v = bob1...bn be two strings

* |f we can find I, | such that
aidi+1...ai+k-1 = bjbj+1...bj+k-1, U @and v have a
common subword of length k

* Aim Is to find the length of the longest common
subword of u and v

Brute force

* Let u=aopas...am and v = bob1...bn
* [ry every pair of starting positionsiinu, jinv

* Match (aj, bi), (ai+1,bi+1),... as far as possible

* Keep track of the length of the longest match
* Assuming m > n, this is O(mn?)

* mn pairs of positions

* From each starting point, scan can be O(n)

Inductive structure

* Let u =apai...am and v = bgb1...bn

* Qidi+1...Airk-1 = DiDj+1...Djsk-1 IS @ common subword of
length k at (i,]) iff @it1...8i1k-1 = Djs1...Djsk-11S @ common
subword of length k-1 at (i+1,j+1)

* LCW(,)): length of the longest common subword
starting at a;and b,

* |f a; = b;, LCW(l,)) is 0, otherwise 1+LCW(i+1,j+1)

* Boundary condition: when we have reached the
end of one of the words

Inductive structure

* Consider positions 0tom+1inu,0ton+1inv

* m+1, n+1 means we have reached the end of
the word

* L CW(m+1,j) = 0 for all |
* | CW(i,n+1) = 0 for all i

* LCW(i,j)) =0, if ajzb;,
1+ LCW(i+1,j+1), if ai=Db;

Subproblem dependency

* LCW(i,]) depends on
LCW(i+1,]+1)

* |Last row and column

have no

dependencies

* Start at bottom right

corner and fill by row

or by column

Subproblem dependency

* LCW(i,]) depends on
LCW(i+1,]+1)

* | ast row and column

have no

dependencies

* Start at bottom right

corner and fill by row

or by column

Subproblem dependency

* LCW(i,]) depends on
LCW(i+1,]+1)

* | ast row and column

have no

dependencies

* Start at bottom right

corner and fill by row

or by column

Subproblem dependency

* LCW(i,]) depends on
LCW(i+1,]+1)

* | ast row and column

have no

dependencies

* Start at bottom right

corner and fill by row

or by column

O = O O O O O Elll®

Subproblem dependency

* LCW(i,]) depends on
LCW(i+1,]+1)

* |Last row and column
have no
dependencies

* Start at bottom right
corner and fill by row
or by column

=i == == O
= O e N = =R ==l — O

Subproblem dependency

* LCW(i,]) depends on
LCW(i+1,]+1)

* |Last row and column
have no
dependencies

* Start at bottom right
corner and fill by row
or by column

=i == == O
= O e N = =R ==l — O

Subproblem dependency

W

* LCW(i,]) depends on
LCW(i+1,]+1)

* | ast row and column

have no

dependencies

* Start at bottom right

corner and fill by row

O o = o o o © RER
©C o000 ookl

© oo = o o 0 REEs
= A — === — O

or by column

Subproblem dependency

Al
(V)

* LCW(i,]) depends on
LCW(i+1,]+1)

* | ast row and column

have no

dependencies

* Start at bottom right

corner and fill by row

CoonNn o o oR
©C o = oo o o
©C oo ook
© o o = o o o REEs
= — ===l — O

or by column

Subproblem dependency

Al
(V)

* LCW(i,]) depends on
LCW(i+1,]+1)

* |Last row and column
have no
dependencies

* Start at bottom right
corner and fill by row
or by column

O oo w o oS
O o = 0o o o RER
=i == == O
=R A = === — O

OCoonNN o ook
C o000 ocook

Reading off the solution

* Find (i,j) with largest

e

*

*
S

niry
LCW(2,0) =3

ead off the actual
ubword diagonally

A

W

O oo w o oS

CoonNNO ool

O o —= O o o RER

O O O OO0 O O

=i == == O
= O e N = =R ==l — O

Reading off the solution

*
e

*

*
S

ind (i,J) with largest
niry

LCW(2,0) = 3

ead off the actual
ubword diagonally

O O O OO0 O O

4
e
0
0
0
1
0
0
0

O = O O O O O Kl

| CW(u,v), DP

function LCWCu,v) # ul[@..m], v[0..n]
forr =0 1. mel - § FCWFrdiarl] — @ 4 1 for Fow

for ¢ = 0. 1. mil S LCWimillfcl =0 F # ¢ for col
maxLCW = 0

for € = h.n=1,..0
for £ = m.m=1,.0

T Culrl — vicl)
LCW[r][c] = 1 + LCW[r+1][c+1]

else
LCWErllc]l =0

1t (LCW[r][c] > maxLCW)
maxLCW = LCW[r][c]

return(maxLCW)

Complexity

* Recall that the brute force approach was O(mn?)

* The inductive solution is O(mn) if we use dynamic
programming (or memoization)

* Need to fill an O(mn) size table

* Each table entry takes constant time to compute

| ongest common
supseguence

* Subseqguence: can drop some letters in between

* Given two strings, find the (length of the) longest
common subsequence

* “secret”, “secretary” — “secret”, length 6
* “bisect”, “trisect” — “isect”, length 5
* “bisect”, “secret” — “sect”, length 4

* “director”, “secretary” —“ectr”, “retr”, length 4

L CS

* | CS is longest path

C
)
O
=
-
)
O
O
C
=
32
AV
O
)
=

000 000
OO0 0O0 0O o
O O O =m0 e
Q0 OO0 O/O0 O
OO0 OO0 v O e
©C O ON OO o
OO0 MO O O M@
O

o

zero LCW
entries, moving right

and down

non

Applications

* Analyzing genes
* DNA is a long string over A, T,G,C

* Two species are closer if their DNA has longer
common subsequence

* UNIX diff command
* Compares text files

* Find longest matching subsequence of lines

Inductive structure

do a1 d2 Cre e amet L eelm
bO b1 b2 bn—‘l bn

u
\Y

* |f do = bo,
LCS(aoa1...am, bob1...bn) = | LCS(a1a2...am, b1b2...bn)

* Can force (ag,bo) to be part of LCS
* |f not, ag and bg cannot both be part of LCS
* Not sure which one to drop

* Solve both subproblems LCS(aiaz...am, bob+...bn) and
LCS(apai...amb1b2...bn) and take the maximum

Inductive structure

u
\Y

di di+1 di+2 dm-1 dm
bi by b v Bal Da

* LCS(i,j) stands for LCS(aiai+1...am, bjbj+1...bn)
* |f ai = b, LCS(i,j) = 1 + LCS(i+1,j+1)
* |f ai # bj, LCS(i,j) = max(LCS(i+1,j), LCS(i,j+1))
* As with LCW, extend positions to m+1, n+1
* LCS(m+1,)) =0 for all
* LCS(i,n+1) =0 for all |

Subproblem dependency

* LCS(i,]) depends on
LCS(i+1,j+1) as well
as LCS(i+1,)) and

LCS(i,j+1)

* Dependencies for

LCS(m,n) are known

* Start at LCS(m,n)
and fill by row,

column or diagonal

Subproblem dependency

* LCS(i,]) depends on
LCS(i+1,j+1) as well
as LCS(i+1,)) and

LCS(i,j+1)

* Dependencies for

LCS(m,n) are known

* Start at LCS(m,n)
and fill by row,

column or diagonal

Subproblem dependency

* LCS(i,]) depends on
LCS(i+1,j+1) as well
as LCS(i+1,)) and

LCS(i,j+1)

* Dependencies for

LCS(m,n) are known

* Start at LCS(m,n)
and fill by row,

column or diagonal

Subproblem dependency

* LCS(i,]) depends on
LCS(i+1,j+1) as well
as LCS(i+1,)) and

LCS(i,j+1)

* Dependencies for

LCS(m,n) are known

* Start at LCS(m,n)
and fill by row,

column or diagonal

(e R == R == == == B ==l — | O]

Subproblem dependency

* LCS(i,]) depends on
LCS(i+1,j+1) as well
as LCS(i+1,)) and
LCS(i,j+1)

* Dependencies for
LCS(m,n) are known

* Start at LCS(m,n)
and fill by row,
column or diagonal

D | embh | ek | ek | ek | ek | e OREEEN
Q=0 0O 0O O O Kl

Subproblem dependency

* LCS(i,]) depends on
LCS(i+1,j+1) as well
as LCS(i+1,)) and
LCS(i,j+1)

W

* Dependencies for
LCS(m,n) are known

* Start at LCS(m,n)
and fill by row,
column or diagonal

e |8 et W4 f et G0 IS Gl e RS G U
[T G B G S O R G GRS S (D N
Q= OO 0O O O Kl

Subproblem dependency

* LCS(i,]) depends on
LCS(i+1,j+1) as well
as LCS(i+1,)) and
LCS(i,j+1)

W

* Dependencies for
LCS(m,n) are known

* Start at LCS(m,n)
and fill by row,
column or diagonal

O = N NN NN KR
C | ek | k| ek | k| o | ==k B

D | ek | ek | ek | ek | ek | =d FOREEEN
Q=0 0O 0O O O Kl

Subproblem dependency

* LCS(i,]) depends on
LCS(i+1,j+1) as well
as LCS(i+1,)) and
LCS(i,j+1)

Al
(V)

* Dependencies for
LCS(m,n) are known

* Start at LCS(m,n)
and fill by row,
column or diagonal

O = N W W W WK
O = N NN NN KR
C | ek | k| ek | k| o | ==k B
| ek | ek | ek | emd | ek | eed ORI N
Q=0 0O 0O O O Kl

Subproblem dependency

* LCS(i,]) depends on
LCS(i+1,j+1) as well
as LCS(i+1,)) and
LCS(i,j+1)

Al
(V)

* Dependencies for
LCS(m,n) are known

* Start at LCS(m,n)
and fill by row,
column or diagonal

O x| W & b b KN
O = N W W W WK
O = N NN NN KR
C | ek | k| ek | k| o | ==k B
| ek | ek | ek | emd | ek | eed ORI N
Q=0 0O 0O O O Kl

Recovering the sequence

2 345

* Trace back the path e e ik e i
by which each entry 3 2111 0
was filled 29 11 0
* Each diagonal step is 32110
an element of the 3182 1/10
LCS 2/2/2/1[1/0
¥ oo 11 +———
00 0

O | b
(a—
(a

| CS(u,v), DP

fiinction LCSCu v # ulf@ ml|. vi0. .n]

foe r = 0. 1. myl | LCSPEeidintl] - @ }

for.c = 0.1 . mel 4 ITCSEmtl)fc] = @ }

for c = phb ot 0
for r = mm-1,.0

it CUfr
LCS[r
else

LCS[rdlel = max(LCS[p+l],

== v[c])
[c] = 1 + LCS[r+1][c+1]

LCS[r][c+1])

return(LCS[0][Q])

Complexity

* Again O(mn) using dynamic programming (or
memoization)

* Need to fill an O(mn) size table

* Each table entry takes constant time to compute

