
DESIGN AND ANALYSIS  
OF ALGORITHMS
Common Subwords and Subsequences

MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE
http://www.cmi.ac.in/~madhavan

NPTEL MOOC,JAN-FEB 2015
Week 7, Module 4

http://www.cmi.ac.in/~madhavan

Longest common subword

Given two strings, find the (length of the) longest
common subword

“secret”, “secretary” — “secret”, length 6

“bisect”, “trisect” — “sect”, length 4

“bisect”, “secret” — “sec”, length 3

“director”, “secretary” —“ec”, “re”, length 2

More formally …

Let u = a0a1…am and v = b0b1…bn be two strings

If we can find i, j such that  
aiai+1…ai+k-1 = bjbj+1…bj+k-1, u and v have a
common subword of length k

Aim is to find the length of the longest common
subword of u and v

Brute force
Let u = a0a1…am and v = b0b1…bn

Try every pair of starting positions i in u, j in v

Match (ai, bi), (ai+1,bi+1),… as far as possible

Keep track of the length of the longest match

Assuming m > n, this is O(mn2)

mn pairs of positions

From each starting point, scan can be O(n)

Inductive structure
Let u = a0a1…am and v = b0b1…bn

aiai+1…ai+k-1 = bjbj+1…bj+k-1 is a common subword of
length k at (i,j) iff ai+1…ai+k-1 = bj+1…bj+k-1 is a common
subword of length k-1 at (i+1,j+1)

LCW(i,j): length of the longest common subword
starting at ai and bj

If ai ≠ bj, LCW(i,j) is 0, otherwise 1+LCW(i+1,j+1)

Boundary condition: when we have reached the
end of one of the words

Inductive structure

Consider positions 0 to m+1 in u, 0 to n+1 in v

m+1, n+1 means we have reached the end of
the word

LCW(m+1,j) = 0 for all j

LCW(i,n+1) = 0 for all i

LCW(i,j) = 0, if ai ≠ bj, 
 1+ LCW(i+1,j+1), if ai = bj

Subproblem dependency
0 1 2 3 4 5 6
s e c r e t •

0 b
1 i
2 s
3 e
4 c
5 t
6 •

LCW(i,j) depends on
LCW(i+1,j+1)

Last row and column
have no
dependencies

Start at bottom right
corner and fill by row
or by column

Subproblem dependency
0 1 2 3 4 5 6
s e c r e t •

0 b
1 i
2 s
3 e
4 c
5 t
6 •

LCW(i,j) depends on
LCW(i+1,j+1)

Last row and column
have no
dependencies

Start at bottom right
corner and fill by row
or by column

Subproblem dependency
0 1 2 3 4 5 6
s e c r e t •

0 b
1 i
2 s
3 e
4 c
5 t
6 •

LCW(i,j) depends on
LCW(i+1,j+1)

Last row and column
have no
dependencies

Start at bottom right
corner and fill by row
or by column 0 0 0 0 00 0

0
0
0
0
0
0

Subproblem dependency
0 1 2 3 4 5 6
s e c r e t •

0 b
1 i
2 s
3 e
4 c
5 t
6 •

LCW(i,j) depends on
LCW(i+1,j+1)

Last row and column
have no
dependencies

Start at bottom right
corner and fill by row
or by column 0 0 0 0 00 0

0
0
0
0
0
0

1
0
0
0
0
0

Subproblem dependency
0 1 2 3 4 5 6
s e c r e t •

0 b
1 i
2 s
3 e
4 c
5 t
6 •

LCW(i,j) depends on
LCW(i+1,j+1)

Last row and column
have no
dependencies

Start at bottom right
corner and fill by row
or by column 0 0 0 0 00 0

0
0
0
0
0
0

1
0
0
0
0
0

1
0
0
0

0
0

Subproblem dependency
0 1 2 3 4 5 6
s e c r e t •

0 b
1 i
2 s
3 e
4 c
5 t
6 •

LCW(i,j) depends on
LCW(i+1,j+1)

Last row and column
have no
dependencies

Start at bottom right
corner and fill by row
or by column 0 0 0 0 00 0

0
0
0
0
0
0

1
0
0
0
0
0

1
0
0
0

0
0

0
0
0
0
0
0

Subproblem dependency
0 1 2 3 4 5 6
s e c r e t •

0 b
1 i
2 s
3 e
4 c
5 t
6 •

LCW(i,j) depends on
LCW(i+1,j+1)

Last row and column
have no
dependencies

Start at bottom right
corner and fill by row
or by column 0 0 0 0 00 0

0
0
0
0
0
0

1
0
0
0
0
0

1
0
0
0

0
0

0
0
0
0
0
0

0
1
0
0
0
0

Subproblem dependency
0 1 2 3 4 5 6
s e c r e t •

0 b
1 i
2 s
3 e
4 c
5 t
6 •

LCW(i,j) depends on
LCW(i+1,j+1)

Last row and column
have no
dependencies

Start at bottom right
corner and fill by row
or by column 0 0 0 0 00 0

0
0
0
0
0
0

1
0
0
0
0
0

1
0
0
0

0
0

0
0
0
0
0
0

0
1
0
0
0
0

0
0
2
0
0
0

Subproblem dependency
0 1 2 3 4 5 6
s e c r e t •

0 b
1 i
2 s
3 e
4 c
5 t
6 •

LCW(i,j) depends on
LCW(i+1,j+1)

Last row and column
have no
dependencies

Start at bottom right
corner and fill by row
or by column 0 0 0 0 00 0

0
0
0
0
0
0

1
0
0
0
0
0

1
0
0
0

0
0

0
0
0
0
0
0

0
1
0
0
0
0

0
0
2
0
0
0

0
0
0
3
0
0

Reading off the solution
0 1 2 3 4 5 6
s e c r e t •

0 b
1 i
2 s
3 e
4 c
5 t
6 • 0 0 0 0 00 0

0
0
0
0
0
0

1
0
0
0
0
0

1
0
0
0

0
0

0
0
0
0
0
0

0
1

0
0
0

0
0
2
0
0
0

0
0
0
3
0
0

0

Find (i,j) with largest
entry

LCW(2,0) = 3

Read off the actual
subword diagonally

Reading off the solution
0 1 2 3 4 5 6
s e c r e t •

0 b
1 i
2 s
3 e
4 c
5 t
6 • 0 0 0 0 00 0

0
0
0
0
0
0

1
0
0
0
0
0

1
0
0
0

0
0

0
0
0
0
0
0

0
1

0
0
0

0
0
2
0
0
0

0
0
0
3
0
0

0

Find (i,j) with largest
entry

LCW(2,0) = 3

Read off the actual
subword diagonally

LCW(u,v), DP
function LCW(u,v) # u[0..m], v[0..n]

for r = 0,1,…,m+1 { LCW[r][n+1] = 0 } # r for row

for c = 0,1,…,m+1 { LCW[m+1][c] = 0 } # c for col

maxLCW = 0

for c = n,n-1,…,0  
 for r = m,m-1,…0  
 if (u[r] == v[c])  
 LCW[r][c] = 1 + LCW[r+1][c+1]  
 else  
 LCW[r][c] = 0  
 if (LCW[r][c] > maxLCW)  
 maxLCW = LCW[r][c]

return(maxLCW)

Complexity

Recall that the brute force approach was O(mn2)

The inductive solution is O(mn) if we use dynamic
programming (or memoization)

Need to fill an O(mn) size table

Each table entry takes constant time to compute

Longest common
subsequence

Subsequence: can drop some letters in between

Given two strings, find the (length of the) longest
common subsequence

“secret”, “secretary” — “secret”, length 6

“bisect”, “trisect” — “isect”, length 5

“bisect”, “secret” — “sect”, length 4

“director”, “secretary” —“ectr”, “retr”, length 4

LCS
0 1 2 3 4 5 6
s e c r e t •

0 b
1 i
2 s
3 e
4 c
5 t
6 • 0 0 0 0 00 0

0
0
0
0
0
0

1
0
0
0
0
0

1
0
0
0

0
0

0
0
0
0
0
0

0
1

0
0
0

0
0
2
0
0
0

0
0
0
3
0
0

0

LCS is longest path
we can find between
non-zero LCW
entries, moving right
and down

Applications
Analyzing genes

DNA is a long string over A,T,G,C

Two species are closer if their DNA has longer
common subsequence

UNIX diff command

Compares text files

Find longest matching subsequence of lines

Inductive structure

If a0 = b0,  

LCS(a0a1…am, b0b1…bn) = 1 + LCS(a1a2…am, b1b2…bn)

Can force (a0,b0) to be part of LCS

If not, a0 and b0 cannot both be part of LCS

Not sure which one to drop

Solve both subproblems LCS(a1a2…am, b0b1…bn) and  
LCS(a0a1…am,b1b2…bn) and take the maximum

u a0 a1 a2 … … am-1 am

v b0 b1 b2 … bn-1 bn

Inductive structure

LCS(i,j) stands for LCS(aiai+1…am, bjbj+1…bn)

If ai = bj, LCS(i,j) = 1 + LCS(i+1,j+1)

If ai ≠ bj, LCS(i,j) = max(LCS(i+1,j), LCS(i,j+1))

As with LCW, extend positions to m+1, n+1

LCS(m+1,j) = 0 for all j

LCS(i,n+1) = 0 for all i

u ai ai+1 ai+2 … … am-1 am

v bj bj+1 bj+2 … bn-1 bn

Subproblem dependency
0 1 2 3 4 5 6
s e c r e t •

0 b
1 i
2 s
3 e
4 c
5 t
6 •

LCS(i,j) depends on
LCS(i+1,j+1) as well
as LCS(i+1,j) and
LCS(i,j+1)

Dependencies for
LCS(m,n) are known

Start at LCS(m,n)
and fill by row,
column or diagonal

Subproblem dependency
0 1 2 3 4 5 6
s e c r e t •

0 b
1 i
2 s
3 e
4 c
5 t
6 •

LCS(i,j) depends on
LCS(i+1,j+1) as well
as LCS(i+1,j) and
LCS(i,j+1)

Dependencies for
LCS(m,n) are known

Start at LCS(m,n)
and fill by row,
column or diagonal

Subproblem dependency
0 1 2 3 4 5 6
s e c r e t •

0 b
1 i
2 s
3 e
4 c
5 t
6 •

LCS(i,j) depends on
LCS(i+1,j+1) as well
as LCS(i+1,j) and
LCS(i,j+1)

Dependencies for
LCS(m,n) are known

Start at LCS(m,n)
and fill by row,
column or diagonal 0

0
0
0
0
0
0

0 0 0 0 0 0

Subproblem dependency
0 1 2 3 4 5 6
s e c r e t •

0 b
1 i
2 s
3 e
4 c
5 t
6 •

LCS(i,j) depends on
LCS(i+1,j+1) as well
as LCS(i+1,j) and
LCS(i,j+1)

Dependencies for
LCS(m,n) are known

Start at LCS(m,n)
and fill by row,
column or diagonal 0

0
0
0
0
0
0

0 0 0 0 0 0
1
0
0
0
0
0

Subproblem dependency
0 1 2 3 4 5 6
s e c r e t •

0 b
1 i
2 s
3 e
4 c
5 t
6 •

LCS(i,j) depends on
LCS(i+1,j+1) as well
as LCS(i+1,j) and
LCS(i,j+1)

Dependencies for
LCS(m,n) are known

Start at LCS(m,n)
and fill by row,
column or diagonal 0

0
0
0
0
0
0

0 0 0 0 0 0
1
0
0
0
0
0

1
1
1
1
1
1

Subproblem dependency
0 1 2 3 4 5 6
s e c r e t •

0 b
1 i
2 s
3 e
4 c
5 t
6 •

LCS(i,j) depends on
LCS(i+1,j+1) as well
as LCS(i+1,j) and
LCS(i,j+1)

Dependencies for
LCS(m,n) are known

Start at LCS(m,n)
and fill by row,
column or diagonal 0

0
0
0
0
0
0

0 0 0 0 0 0
1
0
0
0
0
0

1
1
1
1
1
1

1
1
1
1
1
1

Subproblem dependency
0 1 2 3 4 5 6
s e c r e t •

0 b
1 i
2 s
3 e
4 c
5 t
6 •

LCS(i,j) depends on
LCS(i+1,j+1) as well
as LCS(i+1,j) and
LCS(i,j+1)

Dependencies for
LCS(m,n) are known

Start at LCS(m,n)
and fill by row,
column or diagonal 0

0
0
0
0
0
0

0 0 0 0 0 0
1
0
0
0
0
0

1
1
1
1
1
1

1
1
1
1
1
1

1
2
2
2
2
2

Subproblem dependency
0 1 2 3 4 5 6
s e c r e t •

0 b
1 i
2 s
3 e
4 c
5 t
6 •

LCS(i,j) depends on
LCS(i+1,j+1) as well
as LCS(i+1,j) and
LCS(i,j+1)

Dependencies for
LCS(m,n) are known

Start at LCS(m,n)
and fill by row,
column or diagonal 0

0
0
0
0
0
0

0 0 0 0 0 0
1
0
0
0
0
0

1
1
1
1
1
1

1
1
1
1
1
1

1
2
2
2
2
2

1
2
3
3
3
3

Subproblem dependency
0 1 2 3 4 5 6
s e c r e t •

0 b
1 i
2 s
3 e
4 c
5 t
6 •

LCS(i,j) depends on
LCS(i+1,j+1) as well
as LCS(i+1,j) and
LCS(i,j+1)

Dependencies for
LCS(m,n) are known

Start at LCS(m,n)
and fill by row,
column or diagonal 0

0
0
0
0
0
0

0 0 0 0 0 0
1
0
0
0
0
0

1
1
1
1
1
1

1
1
1
1
1
1

1
2
2
2
2
2

1
2
3
3
3
3

1
2
3
4
4
4

Recovering the sequence
0 1 2 3 4 5 6
s e c r e t •

0 b
1 i
2 s
3 e
4 c
5 t
6 •

Trace back the path
by which each entry
was filled

Each diagonal step is
an element of the
LCS

“sect”
0
0
0
0
0
0
0

0 0 0 0 0 0
1
0
0
0
0
0

1
1
1
1
1
1

1
1
1
1
1
1

1
2
2
2
2
2

1
2
3
3
3
3

1
2
3
4
4
4

LCS(u,v), DP
function LCS(u,v) # u[0..m], v[0..n]

for r = 0,1,…,m+1 { LCS[r][n+1] = 0 }

for c = 0,1,…,m+1 { LCS[m+1][c] = 0 }

for c = n,n-1,…,0  
 for r = m,m-1,…0  
 if (u[r] == v[c])  
 LCS[r][c] = 1 + LCS[r+1][c+1]  
 else  
 LCS[r][c] = max(LCS[r+1][c],  
 LCS[r][c+1])

return(LCS[0][0])

Complexity

Again O(mn) using dynamic programming (or
memoization)

Need to fill an O(mn) size table

Each table entry takes constant time to compute

