DESIGN AND ANALYSIS
OF ALGORITHMS

Grid Paths



http://www.cmi.ac.in/~madhavan

Grid Paths

* Roads arranged in a
rectangular grid

* Can only go up or
right

* How many different
routes from (0,0) to
(m,n)?

(9,10)

(0,0)




Grid Paths

* Roads arranged in a
rectangular grid

* Can only go up or
right

* How many different
routes from (0,0) to
(m,n)?

(9,10)

(0,0)




Grid Paths

* Roads arranged in a
rectangular grid

* Can only go up or
right

* How many different
routes from (0,0) to
(m,n)?

(5,10)

(0,0)




Grid Paths

* Roads arranged in a
rectangular grid

* Can only go up or
right

* How many different
routes from (0,0) to
(m,n)?

(5,10)

(0,0)




Combinatorial solution

* Every path from (0,0) to (5,10) has 15 segments
* |n general m+n segments from (0,0) to (m,n)
* Of these exactly 5 are right moves, 10 are up moves

* Fix the positions of the 5 right moves among the
overall 15 positions

* 15 choose 5 = (15!)/(10!)(5!) = 3003

* Same as 15 choose 10: fix the 10 up moves




Holes

* \What if an
Intersection Is
blocked?

* (2,4), for example

* Paths through (2,4)
need to be discarded

* Two of our earlier
examples are
invalid paths

(5,10)

(0,0)




Holes

* \What if an
Intersection Is
blocked?

* (2,4), for example

* Paths through (2,4)
need to be discarded

* Two of our earlier
examples are
invalid paths

(5,10)

(0,0)




Holes

* \What if an
Intersection Is
blocked?

* (2,4), for example

* Paths through (2,4)
need to be discarded

* Two of our earlier
examples are
invalid paths

(5,10)

(0,0)




Holes

* \What if an
Intersection Is
blocked?

* (2,4), for example

* Paths through (2,4)
need to be discarded

* Two of our earlier
examples are
invalid paths

(5,10)

(0,0)




Combinatorial solution

* Every path through (2,4) goes from (0,0) to (2,4) and then
from (2,4) to (5,10)

* Count these separately:
* (4+2) choose 2 = 15
* (6+3) choose 3 = 84
* Multiply to get all paths through (2,4): 1260

* Subtract from 15 choose 5 = 3003 to get valid paths that
avoid (2,4): 1743




Holes

* \What if two intersections
are blocked?

* Subtract paths through
(2,4), (4,4)

* Some paths are
counted twice!

* Add back paths through
both holes

* |nclusion-exclusion:
messy

(9,10)

(0,0)




INnductive formulation

* How can a path reach (i,))
* Move up from (i,j-1) 1) — )

* Move right from (i-1,j) T

* Every path to these neighbours (1J-1)

extends in a uniqgue way to (i,j)




INnductive formulation

* Paths(i,j) : Number of paths from (0,0) to (i,))
* Paths(i,)) = Paths(i-1,)) + Paths(i,j-1)
* Boundary cases

* Paths(i,0) = Paths(i-1,0) # Bottom row

* Paths(0,)) = Paths(0,j-1) # Left column

* Paths(0,0) = 1 # Base case




Dealing with holes

* Paths(i,)) = O, if there is a hole at (i)
* Paths(i,)) = Paths(i-1,j) + Paths(i,j-1), otherwise
* Boundary cases

* Paths(i,0) = Paths(i-1,0) # Bottom row

* Paths(0,)) = Paths(0,j-1) # Left column

* Paths(0,0) = 1 # Base case




Computing Paths(i,))

* Naive recursion will recompute multiple times
* Paths(5,10) requires Paths(4,10) and Paths(5,9)

* Both Paths(4,10) and Paths(5,9) require
Paths(4,9)

* Use memoization ...

* ... or compute the subproblems directly in a
suitable way




Dynamic programming

(5,10)

* |dentify DAG

structure

* Paths(0,0) has no

dependencies =

* Start at (0,0)




* |dentify DAG
structure

* Paths(0,0) has no
dependencies

* Start at (0,0)




Dynamic prOQrammlng

* Start at (0,0)

* Fill row by row




Dynamic prOQrammlng

* Start at (0,0)

* Fill row by row




Dynamic prOQrammlng

* Start at (0,0)

* Fill row by row




Dynamic prOgrammlng

* Start at (0,0)

* Fill row by row




Dynamic prcgrammmg

* Start at (0,0)

* Fill row by row




Dynamic prOgrammlng

* Start at (0,0)

* Fill row by row




Dynamic programmlng

* Start at (0,0)

* Fill row by row




Dynamic programming

* Start at (0,0)

* Fill row by row




Dynamic programming

—11—51 181526 1363

40130 345 83

3090 215 49

216012527
* Start at (0,0) 13

-1
39
-8
T 1
' g
* Fill row by row 1
4
-3
2
1 1




Dynamic prOQrammlng

* Start at (0,0)

* Fill by column




Dynamic prOQrammlng

* Start at (0,0)

* Fill by column




Dynamic prOQrammlng

* Start at (0,0)

* Fill by column




Dynamic programming
el

* Start at (0,0)

* Fill by column




Dynamic programming

* Start at (0,0)

* Fill by column

= N WG N 5o

i S T e e




Dynamic programming

1151 181 526 1363
1040 130 345 837
930 90 215 492
82160125272
* Start at (0,0) B e e
16 26 82
* Fill by column 1 3 6
4 20 o6
3 1015 21
2 345 ?
1 1 1 1




Dynamic prOQrammlng

* Start at (0,0)

* Fill by diagonal




Dynamic prOQrammlng

* Start at (0,0)

* Fill by diagonal




Dynamic prOQrammlng

* Start at (0,0)

* Fill by diagonal




Dynamic programming

* Start at (0,0)

* Fill by diagonal




Dynamic prOgrammlng

* Start at (0,0)

* Fill by diagonal




Viemoization vs
dynamic programming

* Holes just inside the
border

* Memoization never
explores the shaded
region

Tﬁ'ﬂ'ﬂﬂ;




Memolzation vs
dynamic programming

H E N

* Holes just inside the
border

* Memoization never
explores the shaded

region




Memolzation vs
dynamic programming

* Memo table has
O(m+n) entries —-_-_H

* Dynamic
programming blindly
fills all O(mn) entries

* |teration vs recursion
—“wasteful”
dynamic
programming is still
better, in general




