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Inductive definitions
Factorial


f(0) = 1


f(n) = n × f(n-1)


Insertion sort


isort( [ ] ) = [ ]


isort( [x1,x2,..,xn]) = insert(x1,isort([x2,…,xn]))



… Recursive programs

int factorial(n):

if (n <= 0)

return(1)

else

return(n*factorial(n-1)) 



Optimal substructure property

Solution to original problem can be derived by 
combining solutions to subproblems


factorial(n-1) is a subproblem of factorial(n)


So are factorial(n-2), factorial(n-3), …, factorial(0)


isort([x2,…,xn]) is a subproblem of isort([x1,x2,…,xn])


So is isort([xi,…,xj]) for any 1 ≤ i ≤ j ≤ n



Interval scheduling
CMI has a special video classroom for delivering 
online lectures


Different teachers want to book the classroom — the 
slot for each instructor i starts at s(i) and finishes at f(i)


Slots may overlap, so not all bookings can be 
honoured


Choose a subset of bookings to maximize the number 
of teachers who get to use the room



Subproblems

Each subset of booking requests is a subproblem


Greedy strategy


Pick one request among those still in contention


Eliminate bookings that conflict with this choice


Solve the resulting subproblem



Subproblems …
Each subset of booking requests is a subproblem


Given N bookings, we have 2N subproblems


Greedy strategy efficiently looks at only O(N) of 
these subproblems


Each local choice rules out large number of 
subproblems


Need a proof that this is a valid strategy



Weighted interval scheduling
Same scenario as before, but each request comes 
with a weight


Weight could be the amount a person is willing 
to pay for using the resource


Aim is now to maximize the total weight of the 
bookings selected


Not the same as maximizing the number of 
bookings selected



Weighted interval scheduling
Greedy strategy for unweighted case


Select request with earliest finish time


Not valid any more

weight 3
weight 1

weight 1



Weighted interval scheduling

We can search for another greedy strategy that 
works …


… or look for an inductive solution that is 
“obviously” correct



Weighted interval scheduling
Let the bookings be ordered by starting time


Begin with b1


Either b1 is in the optimal solution or it is not


If we include b1, eliminate conflicting requests 
from b2,…,bN and solve the resulting subproblem


If we exclude b1, solve the subproblem b2,…,bN


Evaluate both options, choose the maximum



Weighted interval scheduling
The inductive solution considers all options


For each bj, the best solution either has bj or does 
not


For b1, we are explicitly checking both cases


If b2 is not in conflict with b1, it will be considered 
in both subproblems after choosing b1


If b2 is in conflict with b1, it will be considered in 
the subproblem where b1 is not chosen


…



The challenge
b1 and b2 in conflict, but both compatible with 
b3,b4,…,bN


Choose b1 ⇒ subproblem b3,b4,…,bN


Discard b1 ⇒ subproblem b2,b3,…,bN


Next stage, choose/discard b2

Discard b2 ⇒ again subproblem b3,b4,…,bN

b1 b2 b3 b4

bN…



The challenge …

Inductive solution can give rise to same 
subproblem at different stages


Naive recursive implementation will evaluate each 
instance of same subproblem from scratch


How do we avoid this wasteful recomputation?


Memoization and dynamic programming


