DESIGN AND ANALYSIS
OF ALGORITHMS

Dynamic Programming

http://www.cmi.ac.in/~madhavan

INnductive definitions

* Factorial

* £(0) = 1

* f(n) = n x f(n-1)
* |nsertion sort

* isort([]) =[]

* isort([x1,X2,..,Xn]) = insert(x1,isort([xz,...,Xn]))

... Recursive programs

1nt factorial(n):
1k (<= 0)
return(l)
else

return(n*factorial(n-1))

Optimal substructure property

* Solution to original problem can be derived by
combining solutions to subproblems

* factorial(n-1) is a subproblem of factorial(n)
* So are factorial(n-2), factorial(n-3), ..., factorial(0)
* isort([xe,...,Xn]) is a subproblem of isort([x1 X2,...,Xn])

* So is isort([x,...,xj]]) forany 1 <i<j<n

Interval scheduling

* CMI has a special video classroom for delivering
online lectures

* Different teachers want to book the classroom — the
slot for each instructor i starts at s(i) and finishes at (i)

* Slots may overlap, so not all bookings can be
honoured

* Choose a subset of bookings to maximize the number
of teachers who get to use the room

Subproblems

* Each subset of booking requests is a subproblem

* Greedy strategy

* Pick one request among those still in contention
* Eliminate bookings that conflict with this choice

* Solve the resulting subproblem

Subproblems ...

* Each subset of booking requests is a subproblem
* Given N bookings, we have 2N subproblems

* Greedy strategy efficiently looks at only O(N) of
these subproblems

* Each local choice rules out large number of
subproblems

* Need a proof that this is a valid strategy

Welighted interval scheduling

* Same scenario as before, but each request comes
with a weight

* \Weight could be the amount a person is willing
to pay for using the resource

* Aim Is now to maximize the total weight of the
bookings selected

* Not the same as maximizing the number of
bookings selected

Welighted interval scheduling

* (Greedy strategy for unweighted case
* Select request with earliest finish time
* Not valid any more

weight 1
weight 3

weight 1

-—

Welighted interval scheduling

* \\e can search for another greedy strategy that
works ...

* _.. or look for an inductive solution that is
“obviously” correct

Welighted interval scheduling

* Let the bookings be ordered by starting time
* Begin with b1
* Either b1is in the optimal solution or it is not

* |f we include b+, eliminate conflicting requests
from bg,...,bn and solve the resulting subproblem

* |f we exclude b1, solve the subproblem bo,...,bn

* Evaluate both options, choose the maximum

Welighted interval scheduling

* The inductive solution considers all options

* For each b;, the best solution either has b; or does
not

* For b1, we are explicitly checking both cases

* |f bo Is not in conflict with b4, it will be considered
in both subproblems after choosing b

* |f bo IS In conflict with b4, it will be considered in
the subproblem where b+ is not chosen

1he challenge

* b1 and b2 in conflict, but both compatible with
b3,b4,...,bN

* Choose b1 = subproblem bs,ba,...,bn

* Discard b1 = subproblem by,bs,...,bn

* Next stage, choose/discard by
* Discard b2 = again subproblem bs,ba,...,bn

b
1 b bs

b4

The challenge ...

* |[nductive solution can give rise to same
subproblem at different stages

* Nalve recursive implementation will evaluate each
instance of same subproblem from scratch

* How do we avoid this wasteful recomputation?

* Memoization and dynamic programming

