
DESIGN AND ANALYSIS  
OF ALGORITHMS
Dynamic Programming

MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE
http://www.cmi.ac.in/~madhavan

NPTEL MOOC,JAN-FEB 2015
Week 7, Module 1

http://www.cmi.ac.in/~madhavan

Inductive definitions
Factorial

f(0) = 1

f(n) = n × f(n-1)

Insertion sort

isort([]) = []

isort([x1,x2,..,xn]) = insert(x1,isort([x2,…,xn]))

… Recursive programs

int factorial(n):

if (n <= 0)

return(1)

else

return(n*factorial(n-1))

Optimal substructure property

Solution to original problem can be derived by
combining solutions to subproblems

factorial(n-1) is a subproblem of factorial(n)

So are factorial(n-2), factorial(n-3), …, factorial(0)

isort([x2,…,xn]) is a subproblem of isort([x1,x2,…,xn])

So is isort([xi,…,xj]) for any 1 ≤ i ≤ j ≤ n

Interval scheduling
CMI has a special video classroom for delivering
online lectures

Different teachers want to book the classroom — the
slot for each instructor i starts at s(i) and finishes at f(i)

Slots may overlap, so not all bookings can be
honoured

Choose a subset of bookings to maximize the number
of teachers who get to use the room

Subproblems

Each subset of booking requests is a subproblem

Greedy strategy

Pick one request among those still in contention

Eliminate bookings that conflict with this choice

Solve the resulting subproblem

Subproblems …
Each subset of booking requests is a subproblem

Given N bookings, we have 2N subproblems

Greedy strategy efficiently looks at only O(N) of
these subproblems

Each local choice rules out large number of
subproblems

Need a proof that this is a valid strategy

Weighted interval scheduling
Same scenario as before, but each request comes
with a weight

Weight could be the amount a person is willing
to pay for using the resource

Aim is now to maximize the total weight of the
bookings selected

Not the same as maximizing the number of
bookings selected

Weighted interval scheduling
Greedy strategy for unweighted case

Select request with earliest finish time

Not valid any more

weight 3
weight 1

weight 1

Weighted interval scheduling

We can search for another greedy strategy that
works …

… or look for an inductive solution that is
“obviously” correct

Weighted interval scheduling
Let the bookings be ordered by starting time

Begin with b1

Either b1 is in the optimal solution or it is not

If we include b1, eliminate conflicting requests
from b2,…,bN and solve the resulting subproblem

If we exclude b1, solve the subproblem b2,…,bN

Evaluate both options, choose the maximum

Weighted interval scheduling
The inductive solution considers all options

For each bj, the best solution either has bj or does
not

For b1, we are explicitly checking both cases

If b2 is not in conflict with b1, it will be considered
in both subproblems after choosing b1

If b2 is in conflict with b1, it will be considered in
the subproblem where b1 is not chosen

…

The challenge
b1 and b2 in conflict, but both compatible with
b3,b4,…,bN

Choose b1 ⇒ subproblem b3,b4,…,bN

Discard b1 ⇒ subproblem b2,b3,…,bN

Next stage, choose/discard b2

Discard b2 ⇒ again subproblem b3,b4,…,bN

b1 b2 b3 b4

bN…

The challenge …

Inductive solution can give rise to same
subproblem at different stages

Naive recursive implementation will evaluate each
instance of same subproblem from scratch

How do we avoid this wasteful recomputation?

Memoization and dynamic programming

