DESIGN AND ANALYSIS
OF ALGORITHMS

Greedy algorithms: Huffman codes

http://www.cmi.ac.in/~madhavan

Communication and
compression

* Messages in English/Hindi/Tamil/... are
transmitted between computers in binary

* Encode letters {a,b,...,z} as strings over {0,1}
* 206 letters, 2° = 32, use strings of length 5?
* Can we optimize the amount of data to transfer?

* Use shorter strings for more frequent letters?

Variable length encoding

Morse code

*

*

*

Encode letters using dots (0) and dashes (1)
EncodingofeisO,tis 1, ais 01

Decode 0101 — etet, aa, eta, aet?

Use pauses between letters to distinguish

* Like an extra symbol in encoding

Variable length encoding

Prefix code
* Encoding E(), E(X) is not a prefix of E(y) for any X,y
* |[n Morse code E(e) = 0 is a prefix of E(a) = 01

X a1 bl ocid e
=veQ 11 01 |001| 10 [000

* Example: {a,b,c,d,e}

* Decode 0010000011101

Variable length encoding

Prefix code
* Encoding E(), E(X) is not a prefix of E(y) for any X,y
* |[n Morse code E(e) = 0 is a prefix of E(a) = 01

X a1 bl ocid e
=veQ 11 01 |001| 10 [000

* Example: {a,b,c,d,e}

* Decode 0010000011101
C

Variable length encoding

Prefix code
* Encoding E(), E(X) is not a prefix of E(y) for any X,y
* |[n Morse code E(e) = 0 is a prefix of E(a) = 01

X a1 bl ocid e
=veQ 11 01 |001| 10 [000

* Example: {a,b,c,d,e}

* Decode 0010000011101
cC €

Variable length encoding

Prefix code
* Encoding E(), E(X) is not a prefix of E(y) for any X,y
* |[n Morse code E(e) = 0 is a prefix of E(a) = 01

X a1 bl ocid e
=veQ 11 01 |001| 10 [000

* Example: {a,b,c,d,e}

* Decode 001000001[1101
C € ¢C

Variable length encoding

Prefix code
* Encoding E(), E(X) is not a prefix of E(y) for any X,y
* |[n Morse code E(e) = 0 is a prefix of E(a) = 01

X a1 bl ocid e
=veQ 11 01 |001| 10 [000

* Example: {a,b,c,d,e}

* Decode 0010000011 1|01
G € 00 a4

Variable length encoding

Prefix code
* Encoding E(), E(X) is not a prefix of E(y) for any X,y
* |[n Morse code E(e) = 0 is a prefix of E(a) = 01

X a1 bl ocid e
=veQ 11 01 |001| 10 [000

* Decode 001000001[1101
c-86 € alb

* Example: {a,b,c,d,e}

Optimal prefix codes

* Measure frequency f(x) of each letter x

* Fraction of occurrences of x over large body of
text

* A = {X1,X2,...,Xn}, f(X1) + f(X2) + ... + f(Xn) = 1

* f(x) is the “probability” that next letter is x

Optimal prefix codes ...

* Message M consists of n symbols
* For each letter x, n - f(x) occurrences of x in M
* Each x is encoded by E(x) with length |E(x)|
* Jotal length of encoded message:
* Sum over all x, n - f(x) - |[E(X)]
* Average number of bits per letter

* Sum over all x, f(x) - |E(x)]

Optimal prefix codes ..

* Suppose we have
these frequencies
for our example

X

E(X)
f(x)

a b C d e
11 | 01 001 10 | 000
0.32 0.25/0.20/0.18 0.05

* Average number of bits per letter is

* 0.32-2+025-2+020:-3+0.18:-2+0.05-3

* 2.25

* Fixed length encoding uses 3 bits per letter

* 25% saving using variable length code

Optimal prefix codes ..

* A better encoding X a

E(X)

f(x)

b C d e
11 | 10 | 01 | 001 | 000
0.32/0.25/0.20/0.18 |0.05

* Average number of bits per letter is

* 0.32-2+025-2+020-2+0.18-3+0.05-3

* 2.23

* Given a set of letters A with frequencies, produce a prefix

code that is as efficient as possible

* Minimize ABL(A) — Average Bits per Letter

Codes as trees

* Encoding can be viewed

as a binary tree 01 {001 | 10 | 000

* Path to a node is a binary
string—left is O, right is 1

* Label each node by the
letter it encodes @

* Prefix code: only leaves @§ \

encode letters @

Codes as trees

* Encoding can be viewed
as a binary tree

* Path to a node is a binary
string—left is O, right is 1

* Label each node by the
letter it encodes

* Prefix code: only leaves
encode letters

01

001

000

g

\
O

@)

Codes as trees ...

* Full tree: Every node has O or 2 children
Claim 1: Any optimal prefix code generates a full tree

* |f any node has only one child, we can promote its
child and create a shorter tree

Codes as trees ...

Claim 2: In an optimal tree, if a leaf labelled x is at a
smaller depth than a leaf labelled y, then f(y) < f(x)

* |f f(y) > f(x), exchange labels to get a better tree

Codes as trees ...

Claim 3: In an optimal tree, if a leaf at maximum
depth is labelled x then its sibling is also a leaf.

* |f not, the sibling of this leaf has children
* There is a |leaf at a lower depth

* But depth of the leaf labelled x was at maximum
depth

A recursive solution

* From Claim 3, leaves at maximum depth occur in
pairs

* From Claim 2, these must have lowest frequencies

* Pick letters x and y such that f(x) and f(y) are
lowest

* \We will assign these to a pair of leaves at
maximum depth (left/right does not matter)

A recursive solution ...

* “Combine” x and y into a new letter “xy” with f(xy) =
f(x) + 1(y)

* New alphabet A’ is original A - {x,y} + {xy}
* Recursively find an optimal encoding of A’
* Base case, |A'| = 2, assign the two letters codes 0, 1

* Replace the leaf labelled “xy” by a node with two
children labelled x and y

* Huffman’s algorithm — Huffman coding

Huffman's algorithm

a b C d e
0.32 0.25/0.20/0.18 0.05

Huffman's algorithm

0.32

0.25

0.20

0.18

0.05

de

0.32

0.25

0.20

0.23

Combine
d, e as “de”

Huffman's algorithm

a b C d e
0.32/0.25/0.20/0.18 0.05
a b C de
0.32/0.25/0.200.23

a b cde
0.32 0.25 0.43

Combine
d, e as “de”

Combine
c, de as “cde”

Huffman's algorithm

0.25

0.20

0.18

0.05

de

0.25

0.20

0.23

d

cde

0.32

029

0.43

ab

cde

0.57

0.43

Combine
d, e as “de”

Combine
c, de as “cde

Combine
a, b as “ab”

Huffman's algorithm

0.25

0.20

0.18

0.05

de

0.25

0.20

0.23

d

cde

0.32

029

0.43

ab

cde

0.57

0.43

Combine
d, e as “de”

Combine

c, de as “cde”

Combine
a, b as “ab”

Two letters,
base case

(ab>

(cde

Huffman's algorithm

b ¢ d e Gombine
0.25/0.20/0.18/0.05| d, € as “de

b ¢ de Combine
0.25/0.201/0.23 C, de as “cde”
= 5 8 SpliE db

0.32 | 0.25 | 0.43 asa,b ‘ @
ab cde Two letters, @ @

SEST 0.43 base case

Huffman's algorithm

0.25

0.20

0.18

0.05

de

0.25

0.20

0.23

d

cde

0.32

029

0.43

ab

cde

0.57

0.43

Combine
d, e as “de”

Split “cde”
as c, de

Split “ab”
asa,b

Two letters,
base case

@O® ©@e

Huffman's algorithm

0.25

0.20

0.18

0.05

de

0.25

0.20

0.23

d

cde

0.32

029

0.43

ab

cde

0.57

0.43

Split “de”

as d, e %

Split “Cde”@@ @92
as c, de @ @

Split “ab”
asa,b

Two letters,
base case

Optimality

* By Induction on the size of the alphabet A

* For [A| = 2, base case, clearly the code that uses
{0,1} for the two letters is optimal

* Assuming our algorithm is optimal for |A| = k-1, we
have to show it is also optimal for |[A| = k

Optimality

* Combine lowest frequency X, y into xy
* Construct a tree T’ for this alphabet

* ABL(T’) optimal by induction

* Expand xy into x,ytoget T from T’
Claim: ABL(T) - ABL(T’) = f(xy)

Optimality

Claim: ABL(T) - ABL(T’) = f(xy)

* From T’ to T, only xy, X, y change contribution to
ABL

* Subtract depth(xy)f(xy), add (1+depth(xy))(f(x) + f(y))

* f(xy) = f(x)+f(y), so
depth(xy)f(xy) = depth(xy)(f(x) + f(y))

* Hence ABL(T) is bigger than ABL(T’) by
f(x)+t(y) = f(xy)

Optimality

* Suppose there is another tree S with ABL(S) < ABL(T)

* Can shuffle labels of max depth leaves in S, so that
lowest frequency pair x and y label siblings

* Merge, x and y into xy and contract S to S’

* S’ Is over same alphabet as T’, T’ is optimal by
induction, so ABL(T’) < ABL(S’)

* ABL(S) - ABL(S’) = ABL(T) - ABL(T’) = f(xy),
so ABL(T) < ABL(S) as well, contradiction!

Implementation, complexity

* At each recursive step, extract letters with
minimum frequency and replace by composite
letter with combined frequency

* Store frequencies in an array
* | inear scan to find minimum values
* |A| = k, number of recursive calls is k - 1

* Complexity is O(k?)

Implementation, complexity

* At each recursive step, extract letters with
minimum frequency and replace by composite
letter with combined frequency

* Instead, maintain frequencies in a heap

* O(log k) to find minimum values and insert new
combined letter

* Complexity drops to O(k log k)

Why Is Huffman coding
greedy”

* \We recursively combine letters with two lowest
frequencies

* This Is a locally optimal choice

* \\e never go back and consider other ways of
pairing up letters

Historical note

* Shannon and Fano tried a divide and conquer
approach

* Partition A as A4, Ao

* Sum of frequencies in A4, A2 roughly equal
* Solve each partition recursively

* Shannon-Fano codes are not optimal

* Huffman heard about this problem in a class by Fano
and later found an optimal solution

