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Communication and 
compression

Messages in English/Hindi/Tamil/… are 
transmitted between computers in binary


Encode letters {a,b,…,z} as strings over {0,1}


26 letters, 25 = 32, use strings of length 5?


Can we optimize the amount of data to transfer?


Use shorter strings for more frequent letters?



Variable length encoding
Morse code


Encode letters using dots (0) and dashes (1)


Encoding of e is 0, t is 1, a is 01


Decode 0101 — etet, aa, eta, aet?


Use pauses between letters to distinguish


Like an extra symbol in encoding



Variable length encoding

Prefix code


Encoding E( ), E(x) is not a prefix of E(y) for any x,y


In Morse code E(e) = 0 is a prefix of E(a) = 01


Example: {a,b,c,d,e}


Decode 0010000011101

x a b c d e
E(x) 11 01 001 10 000
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Optimal prefix codes

Measure frequency f(x) of each letter x


Fraction of occurrences of x over large body of 
text


A = {x1,x2,…,xn}, f(x1) + f(x2) + … + f(xn) = 1


f(x) is the “probability” that next letter is x



Optimal prefix codes …
Message M consists of n symbols


For each letter x, n ∙ f(x) occurrences of x in M


Each x is encoded by E(x) with length |E(x)|


Total length of encoded message:


Sum over all x, n ∙ f(x) ∙ |E(x)|


Average number of bits per letter 


Sum over all x, f(x) ∙ |E(x)|



Optimal prefix codes ..
Suppose we have 
these frequencies 
for our example


Average number of bits per letter is


0.32 ∙ 2 + 0.25 ∙ 2 + 0.20 ∙ 3 + 0.18 ∙ 2 + 0.05 ∙ 3


2.25


Fixed length encoding uses 3 bits per letter


25% saving using variable length code

x a b c d e
E(x) 11 01 001 10 000
f(x) 0.32 0.25 0.20 0.18 0.05



Optimal prefix codes ..
A better encoding 
 

Average number of bits per letter is


0.32 ∙ 2 + 0.25 ∙ 2 + 0.20 ∙ 2 + 0.18 ∙ 3 + 0.05 ∙ 3


2.23


Given a set of letters A with frequencies, produce a prefix 
code that is as efficient as possible


Minimize ABL(A) — Average Bits per Letter

x a b c d e
E(x) 11 10 01 001 000
f(x) 0.32 0.25 0.20 0.18 0.05



Codes as trees
Encoding can be viewed 
as a binary tree


Path to a node is a binary 
string—left is 0, right is 1


Label each node by the 
letter it encodes


Prefix code: only leaves 
encode letters 

x a b c d e
E(x) 11 01 001 10 000

ab d

e c



Codes as trees
Encoding can be viewed 
as a binary tree


Path to a node is a binary 
string—left is 0, right is 1


Label each node by the 
letter it encodes


Prefix code: only leaves 
encode letters 

x a b c d e
E(x) 11 10 01 001 000

ab

de

c



Codes as trees …
Full tree: Every node has 0 or 2 children


Claim 1: Any optimal prefix code generates a full tree


If any node has only one child, we can promote its 
child and create a shorter tree


 
 
 



Codes as trees …
Claim 2: In an optimal tree, if a leaf labelled x is at a 
smaller depth than a leaf labelled y, then f(y) ≤ f(x)


If f(y) > f(x), exchange labels to get a better tree 
 
 
 
 
 



Codes as trees …

Claim 3: In an optimal tree, if a leaf at maximum 
depth is labelled x then its sibling is also a leaf.


If not, the sibling of this leaf has children


There is a leaf at a lower depth


But depth of the leaf labelled x was at maximum 
depth



A recursive solution

From Claim 3, leaves at maximum depth occur in 
pairs


From Claim 2, these must have lowest frequencies


Pick letters x and y such that f(x) and f(y) are 
lowest


We will assign these to a pair of leaves at 
maximum depth (left/right does not matter)



A recursive solution …
“Combine” x and y into a new letter “xy” with f(xy) = 
f(x) + f(y)


New alphabet A’ is original A - {x,y} + {xy}


Recursively find an optimal encoding of A’


Base case, |A’| = 2, assign the two letters codes 0, 1


Replace the leaf labelled “xy” by a node with two 
children labelled x and y


Huffman’s algorithm — Huffman coding
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Huffman’s algorithm
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Optimality

By induction on the size of the alphabet A


For |A| = 2, base case, clearly the code that uses 
{0,1} for the two letters is optimal


Assuming our algorithm is optimal for |A| = k-1, we 
have to show it is also optimal for |A| = k



Optimality

Combine lowest frequency x, y into xy


Construct a tree T’ for this alphabet


ABL(T’) optimal by induction


Expand xy into x,y to get T from T’


Claim: ABL(T) - ABL(T’) = f(xy)



Optimality
Claim: ABL(T) - ABL(T’) = f(xy)


From T’ to T, only xy, x, y change contribution to 
ABL


Subtract depth(xy)f(xy), add (1+depth(xy))(f(x) + f(y))


f(xy) = f(x)+f(y), so 
depth(xy)f(xy) = depth(xy)(f(x) + f(y))


Hence ABL(T) is bigger than ABL(T’) by 
f(x)+f(y) = f(xy)



Optimality
Suppose there is another tree S with ABL(S) < ABL(T)


Can shuffle labels of max depth leaves in S, so that 
lowest frequency pair x and y label siblings


Merge, x and y into xy and contract S to S’


S’ is over same alphabet as T’, T’ is optimal by 
induction, so ABL(T’) ≤ ABL(S’)


ABL(S) - ABL(S’) = ABL(T) - ABL(T’) = f(xy), 
so  ABL(T) ≤ ABL(S) as well, contradiction!



Implementation, complexity
At each recursive step, extract letters with 
minimum frequency and replace by composite 
letter with combined frequency


Store frequencies in an array


Linear scan to find minimum values


|A| = k, number of recursive calls is k - 1


Complexity is O(k2)



Implementation, complexity

At each recursive step, extract letters with 
minimum frequency and replace by composite 
letter with combined frequency


Instead, maintain frequencies in a heap


O(log k) to find minimum values and insert new 
combined letter


Complexity drops to O(k log k)



Why is Huffman coding 
greedy?

We recursively combine letters with two lowest 
frequencies


This is a locally optimal choice


We never go back and consider other ways of 
pairing up letters



Historical note
Shannon and Fano tried a divide and conquer 
approach


Partition A as A1, A2


Sum of frequencies in A1, A2 roughly equal


Solve each partition recursively


Shannon-Fano codes are not optimal


Huffman heard about this problem in a class by Fano 
and later found an optimal solution


