NPTEL MOOC, JAN-FEB 2015 Week 6, Module 5

DESIGN AND ANALYSIS OF ALGORITHMS

Greedy algorithms: Huffman codes

MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE http://www.cmi.ac.in/~madhavan

Communication and compression

- Messages in English/Hindi/Tamil/... are transmitted between computers in binary
- * Encode letters {a,b,...,z} as strings over {0,1}
 - * 26 letters, $2^5 = 32$, use strings of length 5?
- * Can we optimize the amount of data to transfer?
 - * Use shorter strings for more frequent letters?

Morse code

- * Encode letters using dots (0) and dashes (1)
- * Encoding of e is 0, t is 1, a is 01
- * Decode 0101 etet, aa, eta, aet?
- * Use pauses between letters to distinguish
 - * Like an extra symbol in encoding

Prefix code

- * Encoding E(), E(x) is not a prefix of E(y) for any x,y
 - In Morse code E(e) = 0 is a prefix of E(a) = 01
- * Example: {a,b,c,d,e}

Х	а	b	С	d	е
E(x)	11	01	001	10	000

* Decode 001000011101

Prefix code

- * Encoding E(), E(x) is not a prefix of E(y) for any x,y
 - In Morse code E(e) = 0 is a prefix of E(a) = 01
- * Example: {a,b,c,d,e}

Х	а	b	С	d	е
E(x)	11	01	001	10	000

* Decode 001 0000011101 C

Prefix code

- * Encoding E(), E(x) is not a prefix of E(y) for any x,y
 - In Morse code E(e) = 0 is a prefix of E(a) = 01
- * Example: {a,b,c,d,e}

Х	а	b	С	d	е
E(x)	11	01	001	10	000

* Decode 001 000 0011101
C e

Prefix code

- * Encoding E(), E(x) is not a prefix of E(y) for any x,y
 - In Morse code E(e) = 0 is a prefix of E(a) = 01
- * Example: {a,b,c,d,e}

Х	а	b	C	d	е
E(x)	11	01	001	10	000

* Decode 001 000 001 1101
C e C

Prefix code

- * Encoding E(), E(x) is not a prefix of E(y) for any x,y
 - In Morse code E(e) = 0 is a prefix of E(a) = 01
- * Example: {a,b,c,d,e}

X	а	b	С	d	е
E(x)	11	01	001	10	000

* Decode 001 000 001 11 01 c e c a

Prefix code

- * Encoding E(), E(x) is not a prefix of E(y) for any x,y
 - In Morse code E(e) = 0 is a prefix of E(a) = 01
- * Example: {a,b,c,d,e}

Х	а	b	С	d	e
E(x)	11	01	001	10	000

* Decode 001 000 001 11 01 c e c a b

Optimal prefix codes

- Measure frequency f(x) of each letter x
 - Fraction of occurrences of x over large body of text
 - * A = {x₁,x₂,...,x_n}, f(x₁) + f(x₂) + ... + f(x_n) = 1
 - * f(x) is the "probability" that next letter is x

Optimal prefix codes ...

- Message M consists of n symbols
 - * For each letter x, $n \cdot f(x)$ occurrences of x in M
- * Each x is encoded by E(x) with length |E(x)|
- * Total length of encoded message:
 - * Sum over all x, $n \cdot f(x) \cdot |E(x)|$
- * Average number of bits per letter
 - * Sum over all x, $f(x) \cdot |E(x)|$

Optimal prefix codes ..

 Suppose we have these frequencies for our example

Х	а	b	С	d	е
E(x)	11	01	001	10	000
f(x)	0.32	0.25	0.20	0.18	0.05

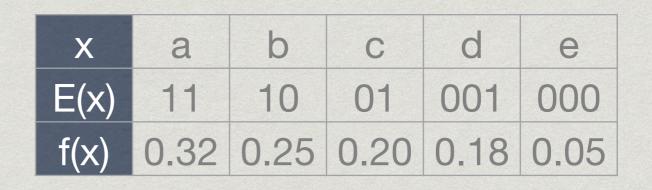
- * Average number of bits per letter is
 - * $0.32 \cdot 2 + 0.25 \cdot 2 + 0.20 \cdot 3 + 0.18 \cdot 2 + 0.05 \cdot 3$

* 2.25

- * Fixed length encoding uses 3 bits per letter
 - * 25% saving using variable length code

Optimal prefix codes ..

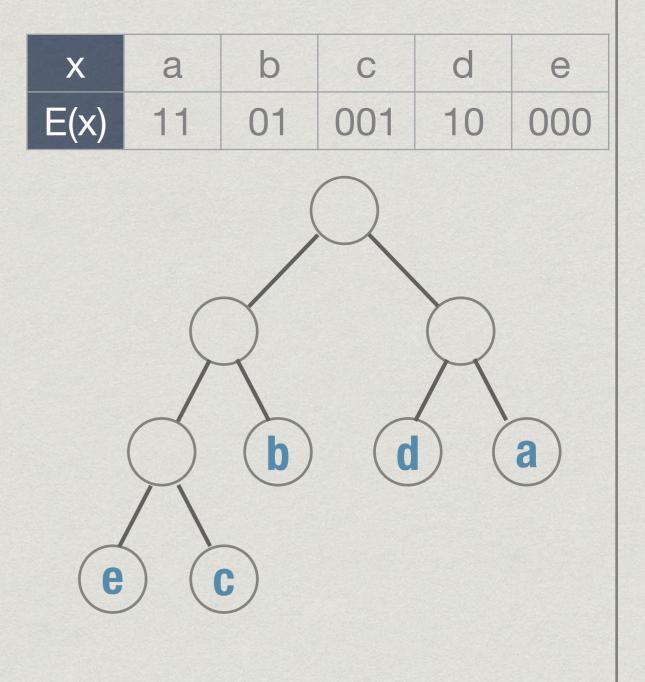
* A better encoding



- * Average number of bits per letter is
 - * $0.32 \cdot 2 + 0.25 \cdot 2 + 0.20 \cdot 2 + 0.18 \cdot 3 + 0.05 \cdot 3$
 - * 2.23
- Given a set of letters A with frequencies, produce a prefix code that is as efficient as possible
 - * Minimize ABL(A) Average Bits per Letter

Codes as trees

- Encoding can be viewed as a binary tree
- * Path to a node is a binary string—left is 0, right is 1
- Label each node by the letter it encodes
- Prefix code: only leaves encode letters



Codes as trees

- Encoding can be viewed as a binary tree
- * Path to a node is a binary string—left is 0, right is 1
- Label each node by the letter it encodes
- Prefix code: only leaves encode letters



Codes as trees ...

* Full tree: Every node has 0 or 2 children

Claim 1: Any optimal prefix code generates a full tree

 If any node has only one child, we can promote its child and create a shorter tree

Codes as trees ...

Claim 2: In an optimal tree, if a leaf labelled x is at a smaller depth than a leaf labelled y, then $f(y) \le f(x)$

If f(y) > f(x), exchange labels to get a better tree

Codes as trees ...

Claim 3: In an optimal tree, if a leaf at maximum depth is labelled x then its sibling is also a leaf.

- * If not, the sibling of this leaf has children
- * There is a leaf at a lower depth
- But depth of the leaf labelled x was at maximum depth

A recursive solution

- From Claim 3, leaves at maximum depth occur in pairs
- * From Claim 2, these must have lowest frequencies
- * Pick letters x and y such that f(x) and f(y) are lowest
- We will assign these to a pair of leaves at maximum depth (left/right does not matter)

A recursive solution ...

- * "Combine" x and y into a new letter "xy" with f(xy) = f(x) + f(y)
- New alphabet A' is original A {x,y} + {xy}
- * Recursively find an optimal encoding of A'
 - * Base case, |A'| = 2, assign the two letters codes 0, 1
- Replace the leaf labelled "xy" by a node with two children labelled x and y
- Huffman's algorithm Huffman coding

x	а	b	С	d	е
f(x)	0.32	0.25	0.20	0.18	0.05

X	а	b	С	d	е
f(x)	0.32	0.25	0.20	0.18	0.05

Combine d, e as "de"

X	а	b	С	de
f(x)	0.32	0.25	0.20	0.23

X	а	b	С	d	е
f(x)	0.32	0.25	0.20	0.18	0.05

Х	а	b	С	de	
f(x)	0.32	0.25	0.20	0.23	

Combine d, e as "de"

Combine c, de as "cde"

X	а	b	cde
f(x)	0.32	0.25	0.43

X	а	b	С	d	е
f(x)	0.32	0.25	0.20	0.18	0.05

Х	а	b	С	de	
f(x)	0.32	0.25	0.20	0.23	

X	а	b	cde
f(x)	0.32	0.25	0.43

Х	ab	cde
f(x)	0.57	0.43

Combine d, e as "de"

Combine c, de as "cde"

Combine a, b as "ab"

X	а	b	С	d	е	
f(x)	0.32	0.25	0.20	0.18	0.05	

Х	а	b	С	de
f(x)	0.32	0.25	0.20	0.23

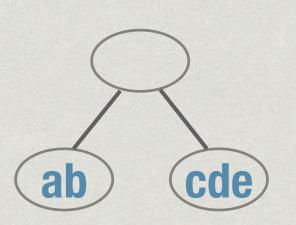
Х	а	b	cde
f(x)	0.32	0.25	0.43

Х	ab	cde
f(x)	0.57	0.43

Combine d, e as "de"

Combine c, de as "cde"

Combine a, b as "ab"



X	а	b	С	d	е	
f(x)	0.32	0.25	0.20	0.18	0.05	

Х	а	b	С	de	
f(x)	0.32	0.25	0.20	0.23	

X	а	b	cde
f(x)	0.32	0.25	0.43

Х	ab	cde
f(x)	0.57	0.43

Combine d, e as "de"

Combine c, de as "cde"

cde

b

a

Split "ab" as a, b

X	а	b	С	d	е	
f(x)	0.32	0.25	0.20	0.18	0.05	

X	а	b	С	de	
f(x)	0.32	0.25	0.20	0.23	

xabcdef(x)0.320.250.43

Х	ab	cde
f(x)	0.57	0.43

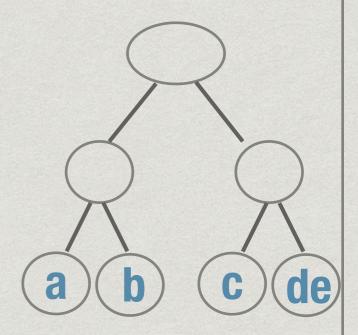
Split "ab" as a, b

Combine

d, e as "de"

Split "cde"

as c, de



x	а	b	С	d	е
f(x)	0.32	0.25	0.20	0.18	0.05

X	а	b	С	de
f(x)	0.32	0.25	0.20	0.23

Split "de" as d, e Split "cde"

b

a

C

e

as c, de

X	а	b	cde
f(x)	0.32	0.25	0.43

Х	ab	cde
f(x)	0.57	0.43

Split "ab" as a, b

- * By induction on the size of the alphabet A
- For |A| = 2, base case, clearly the code that uses
 {0,1} for the two letters is optimal
- Assuming our algorithm is optimal for |A| = k-1, we have to show it is also optimal for |A| = k

- * Combine lowest frequency x, y into xy
- * Construct a tree T' for this alphabet
- * ABL(T') optimal by induction
- * Expand xy into x,y to get T from T'

Claim: ABL(T) - ABL(T') = f(xy)

Claim: ABL(T) - ABL(T') = f(xy)

- From T' to T, only xy, x, y change contribution to ABL
- * Subtract depth(xy)f(xy), add (1+depth(xy))(f(x) + f(y))
- * f(xy) = f(x)+f(y), so depth(xy)f(xy) = depth(xy)(f(x) + f(y))
- * Hence ABL(T) is bigger than ABL(T') by f(x)+f(y) = f(xy)

- Suppose there is another tree S with ABL(S) < ABL(T)</p>
- Can shuffle labels of max depth leaves in S, so that lowest frequency pair x and y label siblings
- * Merge, x and y into xy and contract S to S'
- * S' is over same alphabet as T', T' is optimal by induction, so $ABL(T') \le ABL(S')$
- * ABL(S) ABL(S') = ABL(T) ABL(T') = f(xy), so $ABL(T) \le ABL(S)$ as well, contradiction!

Implementation, complexity

- At each recursive step, extract letters with minimum frequency and replace by composite letter with combined frequency
- * Store frequencies in an array
 - * Linear scan to find minimum values
 - * |A| = k, number of recursive calls is k 1
 - * Complexity is O(k²)

Implementation, complexity

- At each recursive step, extract letters with minimum frequency and replace by composite letter with combined frequency
- * Instead, maintain frequencies in a heap
 - O(log k) to find minimum values and insert new combined letter
 - * Complexity drops to O(k log k)

Why is Huffman coding greedy?

- We recursively combine letters with two lowest frequencies
- * This is a locally optimal choice
- We never go back and consider other ways of pairing up letters

Historical note

- Shannon and Fano tried a divide and conquer approach
 - * Partition A as A₁, A₂
 - * Sum of frequencies in A1, A2 roughly equal
 - * Solve each partition recursively
 - * Shannon-Fano codes are not optimal
- Huffman heard about this problem in a class by Fano and later found an optimal solution