
DESIGN AND ANALYSIS  
OF ALGORITHMS
Greedy algorithms: Huffman codes

MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE
http://www.cmi.ac.in/~madhavan

NPTEL MOOC,JAN-FEB 2015
Week 6, Module 5

http://www.cmi.ac.in/~madhavan

Communication and
compression

Messages in English/Hindi/Tamil/… are
transmitted between computers in binary

Encode letters {a,b,…,z} as strings over {0,1}

26 letters, 25 = 32, use strings of length 5?

Can we optimize the amount of data to transfer?

Use shorter strings for more frequent letters?

Variable length encoding
Morse code

Encode letters using dots (0) and dashes (1)

Encoding of e is 0, t is 1, a is 01

Decode 0101 — etet, aa, eta, aet?

Use pauses between letters to distinguish

Like an extra symbol in encoding

Variable length encoding

Prefix code

Encoding E(), E(x) is not a prefix of E(y) for any x,y

In Morse code E(e) = 0 is a prefix of E(a) = 01

Example: {a,b,c,d,e}

Decode 0010000011101

x a b c d e
E(x) 11 01 001 10 000

Variable length encoding

Prefix code

Encoding E(), E(x) is not a prefix of E(y) for any x,y

In Morse code E(e) = 0 is a prefix of E(a) = 01

Example: {a,b,c,d,e}

Decode 0010000011101

x a b c d e
E(x) 11 01 001 10 000

c

Variable length encoding

Prefix code

Encoding E(), E(x) is not a prefix of E(y) for any x,y

In Morse code E(e) = 0 is a prefix of E(a) = 01

Example: {a,b,c,d,e}

Decode 0010000011101

x a b c d e
E(x) 11 01 001 10 000

c e

Variable length encoding

Prefix code

Encoding E(), E(x) is not a prefix of E(y) for any x,y

In Morse code E(e) = 0 is a prefix of E(a) = 01

Example: {a,b,c,d,e}

Decode 0010000011101

x a b c d e
E(x) 11 01 001 10 000

c e c

Variable length encoding

Prefix code

Encoding E(), E(x) is not a prefix of E(y) for any x,y

In Morse code E(e) = 0 is a prefix of E(a) = 01

Example: {a,b,c,d,e}

Decode 0010000011101

x a b c d e
E(x) 11 01 001 10 000

c e c a

Variable length encoding

Prefix code

Encoding E(), E(x) is not a prefix of E(y) for any x,y

In Morse code E(e) = 0 is a prefix of E(a) = 01

Example: {a,b,c,d,e}

Decode 0010000011101

x a b c d e
E(x) 11 01 001 10 000

c e c a b

Optimal prefix codes

Measure frequency f(x) of each letter x

Fraction of occurrences of x over large body of
text

A = {x1,x2,…,xn}, f(x1) + f(x2) + … + f(xn) = 1

f(x) is the “probability” that next letter is x

Optimal prefix codes …
Message M consists of n symbols

For each letter x, n ∙ f(x) occurrences of x in M

Each x is encoded by E(x) with length |E(x)|

Total length of encoded message:

Sum over all x, n ∙ f(x) ∙ |E(x)|

Average number of bits per letter

Sum over all x, f(x) ∙ |E(x)|

Optimal prefix codes ..
Suppose we have 
these frequencies 
for our example

Average number of bits per letter is

0.32 ∙ 2 + 0.25 ∙ 2 + 0.20 ∙ 3 + 0.18 ∙ 2 + 0.05 ∙ 3

2.25

Fixed length encoding uses 3 bits per letter

25% saving using variable length code

x a b c d e
E(x) 11 01 001 10 000
f(x) 0.32 0.25 0.20 0.18 0.05

Optimal prefix codes ..
A better encoding 
 

Average number of bits per letter is

0.32 ∙ 2 + 0.25 ∙ 2 + 0.20 ∙ 2 + 0.18 ∙ 3 + 0.05 ∙ 3

2.23

Given a set of letters A with frequencies, produce a prefix
code that is as efficient as possible

Minimize ABL(A) — Average Bits per Letter

x a b c d e
E(x) 11 10 01 001 000
f(x) 0.32 0.25 0.20 0.18 0.05

Codes as trees
Encoding can be viewed
as a binary tree

Path to a node is a binary
string—left is 0, right is 1

Label each node by the
letter it encodes

Prefix code: only leaves
encode letters

x a b c d e
E(x) 11 01 001 10 000

ab d

e c

Codes as trees
Encoding can be viewed
as a binary tree

Path to a node is a binary
string—left is 0, right is 1

Label each node by the
letter it encodes

Prefix code: only leaves
encode letters

x a b c d e
E(x) 11 10 01 001 000

ab

de

c

Codes as trees …
Full tree: Every node has 0 or 2 children

Claim 1: Any optimal prefix code generates a full tree

If any node has only one child, we can promote its
child and create a shorter tree

 
 
 

Codes as trees …
Claim 2: In an optimal tree, if a leaf labelled x is at a
smaller depth than a leaf labelled y, then f(y) ≤ f(x)

If f(y) > f(x), exchange labels to get a better tree 
 
 
 
 
 

Codes as trees …

Claim 3: In an optimal tree, if a leaf at maximum
depth is labelled x then its sibling is also a leaf.

If not, the sibling of this leaf has children

There is a leaf at a lower depth

But depth of the leaf labelled x was at maximum
depth

A recursive solution

From Claim 3, leaves at maximum depth occur in
pairs

From Claim 2, these must have lowest frequencies

Pick letters x and y such that f(x) and f(y) are
lowest

We will assign these to a pair of leaves at
maximum depth (left/right does not matter)

A recursive solution …
“Combine” x and y into a new letter “xy” with f(xy) =
f(x) + f(y)

New alphabet A’ is original A - {x,y} + {xy}

Recursively find an optimal encoding of A’

Base case, |A’| = 2, assign the two letters codes 0, 1

Replace the leaf labelled “xy” by a node with two
children labelled x and y

Huffman’s algorithm — Huffman coding

Huffman’s algorithm

x a b c d e

f(x) 0.32 0.25 0.20 0.18 0.05

Huffman’s algorithm

x a b c d e

f(x) 0.32 0.25 0.20 0.18 0.05
Combine 
d, e as “de”

x a b c de
f(x) 0.32 0.25 0.20 0.23

Huffman’s algorithm

x a b c d e

f(x) 0.32 0.25 0.20 0.18 0.05
Combine 
d, e as “de”

x a b c de
f(x) 0.32 0.25 0.20 0.23

Combine 
c, de as “cde”

x a b cde
f(x) 0.32 0.25 0.43

Huffman’s algorithm

x a b c d e

f(x) 0.32 0.25 0.20 0.18 0.05
Combine 
d, e as “de”

x a b c de
f(x) 0.32 0.25 0.20 0.23

Combine 
c, de as “cde”

x a b cde
f(x) 0.32 0.25 0.43

Combine 
a, b as “ab”

x ab cde
f(x) 0.57 0.43

Huffman’s algorithm

x a b c d e

f(x) 0.32 0.25 0.20 0.18 0.05
Combine 
d, e as “de”

x a b c de
f(x) 0.32 0.25 0.20 0.23

Combine 
c, de as “cde”

x a b cde
f(x) 0.32 0.25 0.43

Combine 
a, b as “ab”

x ab cde
f(x) 0.57 0.43

Two letters, 
base case ab cde

Huffman’s algorithm

x a b c d e

f(x) 0.32 0.25 0.20 0.18 0.05
Combine 
d, e as “de”

x a b c de
f(x) 0.32 0.25 0.20 0.23

Combine 
c, de as “cde”

x a b cde
f(x) 0.32 0.25 0.43

x ab cde
f(x) 0.57 0.43

Two letters, 
base case

Split “ab” 
as a, b cde

a b

Huffman’s algorithm

x a b c d e

f(x) 0.32 0.25 0.20 0.18 0.05
Combine 
d, e as “de”

x a b c de
f(x) 0.32 0.25 0.20 0.23

x a b cde
f(x) 0.32 0.25 0.43

x ab cde
f(x) 0.57 0.43

Two letters, 
base case

Split “ab” 
as a, b

Split “cde” 
as c, de

a b c de

Huffman’s algorithm

x a b c d e

f(x) 0.32 0.25 0.20 0.18 0.05

x a b c de
f(x) 0.32 0.25 0.20 0.23

x a b cde
f(x) 0.32 0.25 0.43

x ab cde
f(x) 0.57 0.43

Two letters, 
base case

Split “ab” 
as a, b

Split “cde” 
as c, de

Split “de” 
as d, e

a b c

d e

Optimality

By induction on the size of the alphabet A

For |A| = 2, base case, clearly the code that uses
{0,1} for the two letters is optimal

Assuming our algorithm is optimal for |A| = k-1, we
have to show it is also optimal for |A| = k

Optimality

Combine lowest frequency x, y into xy

Construct a tree T’ for this alphabet

ABL(T’) optimal by induction

Expand xy into x,y to get T from T’

Claim: ABL(T) - ABL(T’) = f(xy)

Optimality
Claim: ABL(T) - ABL(T’) = f(xy)

From T’ to T, only xy, x, y change contribution to
ABL

Subtract depth(xy)f(xy), add (1+depth(xy))(f(x) + f(y))

f(xy) = f(x)+f(y), so 
depth(xy)f(xy) = depth(xy)(f(x) + f(y))

Hence ABL(T) is bigger than ABL(T’) by 
f(x)+f(y) = f(xy)

Optimality
Suppose there is another tree S with ABL(S) < ABL(T)

Can shuffle labels of max depth leaves in S, so that
lowest frequency pair x and y label siblings

Merge, x and y into xy and contract S to S’

S’ is over same alphabet as T’, T’ is optimal by
induction, so ABL(T’) ≤ ABL(S’)

ABL(S) - ABL(S’) = ABL(T) - ABL(T’) = f(xy), 
so ABL(T) ≤ ABL(S) as well, contradiction!

Implementation, complexity
At each recursive step, extract letters with
minimum frequency and replace by composite
letter with combined frequency

Store frequencies in an array

Linear scan to find minimum values

|A| = k, number of recursive calls is k - 1

Complexity is O(k2)

Implementation, complexity

At each recursive step, extract letters with
minimum frequency and replace by composite
letter with combined frequency

Instead, maintain frequencies in a heap

O(log k) to find minimum values and insert new
combined letter

Complexity drops to O(k log k)

Why is Huffman coding
greedy?

We recursively combine letters with two lowest
frequencies

This is a locally optimal choice

We never go back and consider other ways of
pairing up letters

Historical note
Shannon and Fano tried a divide and conquer
approach

Partition A as A1, A2

Sum of frequencies in A1, A2 roughly equal

Solve each partition recursively

Shannon-Fano codes are not optimal

Huffman heard about this problem in a class by Fano
and later found an optimal solution

