
DESIGN AND ANALYSIS  
OF ALGORITHMS
Greedy algorithms: Interval scheduling

MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE
http://www.cmi.ac.in/~madhavan

NPTEL MOOC,JAN-FEB 2015
Week 6, Module 3

http://www.cmi.ac.in/~madhavan

Greedy Algorithms
Need to make a sequence of choices to achieve a
global optimum

At each stage, make the next choice based on
some local criterion

Drastically reduces space to search for solutions

Never go back and revise an earlier decision

How to prove that local choices achieve global
optimum?

Examples so far

Dijkstra’s algorithm

Local rule:  
Freeze the distance of nearest unburnt vertex

Global optimum: 
Distance assigned to each vertex is shortest
distance from source

Examples so far

Prim’s algorithm

Local rule:  
Add to the spanning tree the nearest vertex not yet
in the tree

Global optimum: 
Final spanning tree constructed is a minimum cost
spanning tree

Examples so far

Kruskal’s algorithm

Local rule:  
Add to the current set of edges the next smallest
edge that does not form a cycle

Global optimum: 
Edges collected form a minimum cost spanning
tree

Interval scheduling
CMI has a special video classroom for delivering
online lectures

Different teachers want to book the classroom —
the slot for each instructor i starts at s(i) and
finishes at f(i)

Slots may overlap, so not all bookings can be
honoured

Choose a subset of bookings to maximize the
number of teachers who get to use the room

Interval scheduling …

Greedy approach

Pick the next booking to allot based on a local
strategy

Remove all bookings that overlap with this slot

Argue that this sequence of bookings will
maximize the number of teachers who get to use
the room

Interval scheduling …

Greedy strategy 1

Choose the booking whose start time is earliest

Counterexample

time

bookings

Interval scheduling …

Greedy strategy 2

Choose the booking whose interval is shortest

Counterexample

Interval scheduling …
Greedy strategy 3

Choose the booking that overlaps with minimum
number of other bookings

Counterexample

Interval scheduling …
Greedy strategy 4

Choose the booking that whose finish time is
earliest

Counterexample?

Proof of correctness?

The algorithm
B is the set of bookings

A is the set of accepted bookings, initially empty

While B is not empty

Pick b in B with smallest finishing time

Add b to A

Remove from B all bookings that overlap with b

The algorithm in action

1

2 4 7

3 5 9

6 8

The algorithm in action

1

2 4 7

3 5 9

6 8

The algorithm in action

1

4 7

3 5 9

6 8

The algorithm in action

1

4 7

3 5 9

8

The algorithm in action

1

4 7

3 5 9

8

The algorithm in action

1

7

3 5 9

8

The algorithm in action

1

7

3 5 9

8

The algorithm in action

1 3 5 9

8

The algorithm in action

1 3 5 9

8

The algorithm in action

1 3 5

8

Correctness

Our algorithm produces a solution A

Let O be any optimal allocation of bookings

A and O need not be identical

Can have multiple allocations of same size

Instead, just show that |A| = |O| — same size

Greedy allocation stays
ahead

Let A = i1, i2, …, ik

Assume sorted: f(i1) ≤ s(i2), f(i2) ≤ s(i3), …

Let O = j1, j2, …, jm

Again, assume sorted: f(j1) ≤ s(j2), f(j2) ≤ s(j3), …

To show that k = m

Greedy allocation stays
ahead

Claim: For each r ≤ k, f(ir) ≤ f(jr)

Our greedy solution “stays ahead” of O

Proof: By induction on r

r = 1: our algorithm chooses booking i1 with
earliest overall finish time

Greedy allocation stays
ahead

r > 1: Assume, by induction that f(ir-1) ≤ f(jr-1)

Then, it must be the case that f(ir) ≤ f(jr)

If not, algorithm would choose jr rather than ir

ir-1

jr-1 jr

ir

Greedy allocation is optimal
Suppose m > k

We know that f(ik) ≤ f(jk)

Consider booking jk+1 in O

Greedy algorithm terminates when B is empty

Since f(ik) ≤ f(jk) ≤ s(jk+1), this booking is compatible
with A = i1, i2, …, ik

After selecting ik, B still contains jk+1. Contradiction!

Implementation, complexity
Initially, sort the n bookings by finish time, 
O(n log n)

Bookings are renumbered 1,2,…,n in this order

Set up an array ST[1..n] so that ST[i] = s(i)

Start with booking 1

After choosing booking j, scan ST[j+1], ST[j+2], …
and choose first k such that ST[k] > f(j)

Second phase is O(n), so O(n log n) overall

