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Greedy Algorithms
Need to make a sequence of choices to achieve a 
global optimum


At each stage, make the next choice based on 
some local criterion


Drastically reduces space to search for solutions


Never go back and revise an earlier decision


How to prove that local choices achieve global 
optimum?



Examples so far

Dijkstra’s algorithm


Local rule:  
Freeze the distance of nearest unburnt vertex


Global optimum: 
Distance assigned to each vertex is shortest 
distance from source



Examples so far

Prim’s algorithm


Local rule:  
Add to the spanning tree the nearest vertex not yet 
in the tree


Global optimum: 
Final spanning tree constructed is a minimum cost 
spanning tree



Examples so far

Kruskal’s algorithm


Local rule:  
Add to the current set of edges the next smallest 
edge that does not form a cycle


Global optimum: 
Edges collected form a minimum cost spanning 
tree



Interval scheduling
CMI has a special video classroom for delivering 
online lectures


Different teachers want to book the classroom — 
the slot for each instructor i starts at s(i) and 
finishes at f(i)


Slots may overlap, so not all bookings can be 
honoured


Choose a subset of bookings to maximize the 
number of teachers who get to use the room



Interval scheduling …

Greedy approach


Pick the next booking to allot based on a local 
strategy


Remove all bookings that overlap with this slot


Argue that this sequence of bookings will 
maximize the number of teachers who get to use 
the room



Interval scheduling …

Greedy strategy 1


Choose the booking whose start time is earliest


Counterexample

time

bookings



Interval scheduling …

Greedy strategy 2


Choose the booking whose interval is shortest


Counterexample



Interval scheduling …
Greedy strategy 3


Choose the booking that overlaps with minimum 
number of other bookings


Counterexample



Interval scheduling …
Greedy strategy 4


Choose the booking that whose finish time is 
earliest


Counterexample?


Proof of correctness?



The algorithm
B is the set of bookings


A is the set of accepted bookings, initially empty


While B is not empty


Pick b in B with smallest finishing time


Add b to A


Remove from B all bookings that overlap with b 



The algorithm in action
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Correctness

Our algorithm produces a solution A


Let O be any optimal allocation of bookings


A and O need not be identical


Can have multiple allocations of same size


Instead, just show that |A| = |O| — same size



Greedy allocation stays 
ahead

Let A = i1, i2, …, ik


Assume sorted: f(i1) ≤ s(i2), f(i2) ≤ s(i3), …


Let O = j1, j2, …, jm


Again, assume sorted: f(j1) ≤ s(j2), f(j2) ≤ s(j3), …


To show that k = m



Greedy allocation stays 
ahead

Claim: For each r ≤ k, f(ir) ≤ f(jr)


Our greedy solution “stays ahead” of O


Proof: By induction on r


r = 1: our algorithm chooses booking i1 with 
earliest overall finish time



Greedy allocation stays 
ahead

r > 1: Assume, by induction that f(ir-1) ≤ f(jr-1)


Then, it must be the case that f(ir) ≤ f(jr)


If not, algorithm would choose jr rather than ir

ir-1

jr-1 jr

ir



Greedy allocation is optimal
Suppose m > k


We know that f(ik) ≤ f(jk)


Consider booking jk+1 in O


Greedy algorithm terminates when B is empty 


Since f(ik) ≤ f(jk) ≤ s(jk+1), this booking is compatible 
with  A = i1, i2, …, ik


After selecting ik, B still contains jk+1. Contradiction!



Implementation, complexity
Initially, sort the n bookings by finish time, 
O(n log n)


Bookings are renumbered 1,2,…,n in this order


Set up an array ST[1..n] so that ST[i] = s(i)


Start with booking 1


After choosing booking j, scan ST[j+1], ST[j+2], … 
and choose first k such that ST[k] > f(j)


Second phase is O(n), so O(n log n) overall


