DESIGN AND ANALYSIS
OF ALGORITHMS

Greedy algorithms: Interval scheduling

http://www.cmi.ac.in/~madhavan

Greedy Algorithms

* Need to make a sequence of choices to achieve a
global optimum

* At each stage, make the next choice based on
some local criterion

* Drastically reduces space to search for solutions
* Never go back and revise an earlier decision

* How to prove that local choices achieve global
optimum?

EXamples so far

Dijkstra’s algorithm

* |ocal rule:
Freeze the distance of nearest unburnt vertex

* Global optimum:
Distance assigned to each vertex is shortest

distance from source

EXamples so far

Prim’s algorithm

* | ocal rule:
Add to the spanning tree the nearest vertex not yet

INn the tree

* Global optimum:
Final spanning tree constructed is a minimum cost

spanning tree

EXamples so far

Kruskal’s algorithm

* |Local rule:

Add to the current set of edges the next smallest
edge that does not form a cycle

* Global optimum:

Edges collected form a minimum cost spanning
tree

Interval scheduling

* CMI has a special video classroom for delivering
online lectures

* Different teachers want to book the classroom —
the slot for each instructor i starts at s(i) and
finishes at f(i)

* Slots may overlap, so not all bookings can be
honoured

* Choose a subset of bookings to maximize the
number of teachers who get to use the room

Interval scheduling ...

Greedy approach

* Pick the next booking to allot based on a local
strategy

* Remove all bookings that overlap with this slot

* Argue that this sequence of bookings will
maximize the number of teachers who get to use
the room

Interval scheduling ...

Greedy strategy 1
* Choose the booking whose start time is earliest

* Counterexample

bookings

e e e P

Interval scheduling ...

Greedy strategy 2
* Choose the booking whose interval is shortest

* Counterexample

Interval scheduling ...

Greedy strategy 3

* Choose the booking that overlaps with minimum
number of other bookings

* Counterexample

Interval scheduling ...

Greedy strategy 4

* Choose the booking that whose finish time is
earliest

* Counterexample?

* Proof of correctness?

The algorithm

* B Is the set of bookings
* A Is the set of accepted bookings, initially empty
* \While B is not empty

* Pick b in B with smallest finishing time

* Add b to A

* Remove from B all bookings that overlap with b

The algorithm In action

The algorithm In action

The algorithm In action

6 8
1 3 5 9

The algorithm In action

The algorithm In action

The algorithm In action

The algorithm In action

The algorithm In action

The algorithm In action

The algorithm In action

Correctness

* Our algorithm produces a solution A
* | et O be any optimal allocation of bookings
* A and O need not be identical

* Can have multiple allocations of same size

* |nstead, just show that |A| = |O] — same size

Greedy allocation stays
ahead

* LetA=14,1l2, ..., Ik
* Assume sorted: f(i1) < s(i2), f(i2) < s(ia), ...
* LletO=j1, J2, ..., Jm
* Again, assume sorted: f(j1) < s(j2), f(j2) < s(js), ...

* Jo show that k = m

Greedy allocation stays
ahead

Claim: For each r < k, f(ir) < f(j,)
* Our greedy solution “stays ahead” of O
Proof: By induction on r

* r = 1: our algorithm chooses booking i1 with
earliest overall finish time

Greedy allocation stays
ahead

* r > 1: Assume, by induction that f(ir-1) < f(j-1)
* Then, it must be the case that f(ir) < f(jr)

* |f not, algorithm would choose jrrather than ir

ir-1 ir

Greedy allocation is optimal

* Suppose m > Kk
* \We know that f(ix) < f(jk)
* Consider booking jk+11n O
* Greedy algorithm terminates when B is empty

* Since f(ix) < f(jx) < s(jx+1), this booking is compatible
with A=l s, o Ik

* After selecting ik, B still contains jk+1. Contradiction!

Implementation, complexity

* |nitially, sort the n bookings by finish time,
O(n log n)

* Bookings are renumbered 1,2,...,n in this order
* Set up an array ST[1..n] so that STJi] = s(i)
* Start with booking 1

* After choosing booking j, scan ST[j+1], ST[j+2], ...
and choose first k such that ST[K] > f())

* Second phase is O(n), so O(n log n) overall

