NPTEL MOOC, JAN-FEB 2015 Week 6, Module 2

DESIGN AND ANALYSIS OF ALGORITHMS

Balanced search trees

MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE http://www.cmi.ac.in/~madhavan

Binary search trees

	Неар	Sorted array	Search tree
Find	O(n)	O(log n)	O(log n)
Min	O(1)	O(1)	O(log n)
Max	O(n)	O(1)	O(log n)
Insert	O(log n)	O(n)	O(log n)
Delete	O(log n)	O(n)	O(log n)
Pred	O(n)	O(1)	O(log n)
Succ	O(n)	O(1)	O(log n)

Complexity

- All operations on search trees walk down a single path
- * Worst-case: height of the tree
- * Balanced trees: height is O(log n) for n nodes
- * How to maintain balance as the tree grows and shrinks?

Different notions of balance

- * size(left) = size(right)
 - * Too rigid, only complete binary trees
- * | size(left) size(right) | ≤ 1
 - More manageable but difficult to incrementally maintain this property

Height balance

- height: number of nodes in longest path from root to leaf
 - * empty tree: height = 0
 - * only root: height = 1
- * | height(left) height(right) | ≤ 1
 - * Height balanced trees
 - * AVL trees (Adelson-Velsky and Landis)

Height balance

- Slope of a node : height(left) height(right)
- * Balanced tree
 - * slope is within {-1,0,1} at each node
- * insert(v)/delete(v) can disturb slope upto -2 or +2
- Sufficient to rebalance from slope {-2,-1,0,1,2} to {-1,0,1}
 - Rebalance bottom up assume all lower nodes are balanced

h+2

- Node x has slope +2
- Assume left

 and right
 subtrees are
 balanced
 - * All slopes in
 {-1,0,+1}

h+2

* TL is not empty: expand

+2 h TR TL

* TL is not empty: expand

h+2

- * TL is not empty: expand
- Slope of y is in {-1,0,+1}
 - Bottom up rebalancing

* Case analysis

- * Case 1: slope
 of y is {0,+1}
- Rotate the tree
 right at x

h+1

- * Case 1: slope
 of y is {0,+1}
- Rotate the tree right at x
- * Rebalanced!

TIR

h

- * Case 2: slope of y is {-1}
- * Expand TLR
- * Rotate left at y

- * Case 2: slope
 of y is {-1}
- * Expand TLR
- Rotate left at y
- Rotate right at x

- * Case 2: slope
 of y is {-1}
- * Expand TLR
- Rotate left at y
- Rotate right at x

- * Case 1: slope of y {0,+1}
- Rotate right at x
- * Case 2: slope of y {-1}
- * Rotate left at y
- Rotate right at x

- * Case 1: slope of y {-1,0}
- Rotate left at x
- * Case 2: slope of y {+1}
- * Rotate right at y
- * Rotate left at x

Rotate right

function rotateright(t)

x = t.value y = t.left.value TLL = t.left.left TLR = t.left.right TR = t.right

t.value = y
t.right = t.left
t.right.value = x
t.left = TLL
t.right.left = TLR
t.right.left = TR

Rotate left

function rotateleft(t)

y = t.value z = t.right.value TLL = t.left TLRL = t.right.left TLRR = t.right.right

```
t.value = z
t.left = t.right
t.left.value = y
t.left.left = TLL
t.left.right = TLRL
t.right = TLRR
```


Rebalance

function rebalance(t)

if (slope(t) == 2)
 if (slope(t.left) == -1)
 rotateleft(t.left)
 rotateright(t)

if (slope(t) == -2)
 if (slope(t.right) == 1)
 rotateright(t.right)
 rotateleft(t)

return

Balanced insert(v)

function insert(t,v)

• • •

```
if (v < t.value)
    if (t.left == NIL)
        t.left = Node(v); t.left.parent = t; return
    else
        insert(t.left,v); rebalance(t.left); return
else
    if (t.right == NIL)
        t.right = Node(v); t.right.parent = t; return
    else
        insert(t.right,v); rebalance(t.right); return</pre>
```

Balanced delete(v)

function delete(t,v)

```
# Recursive cases, t.value != v
if (v < t.value)
    if (t.left != NIL)
        delete(t.left,v); rebalance(t.left)
        return</pre>
```

```
if (v > t.value)
    if (t.right != NIL)
        delete(t.right,v); rebalance(t.left)
        return
```

Balanced delete(v)

- # Delete node with two children
 # Copy pred(v) into current node
- pv = pred(v)
 t.value = pv
- # Delete pv from left subtree
 # pv either leaf or has single child

delete(t.left,pv)
rebalance(t.left)

Computing slope

- * slope =
 height(left) height(right)
- Can compute height recursively, on demand
- * Takes time O(n)!
 - Needs to traverse entire tree!

```
function height(t)
if (t == NIL)
  return(0)
return(
  1 +
  max(
    height(t.left),
    height(t.right))
```

Computing slope

- Instead, maintain
 additional value
 t.height in each node
- Update t.height with each insert or delete
- Computing slope is now O(1)

function insert(t,v) else insert(t.left,v); rebalance(t.left); t.height = 1 +max(t.left.height, t.right.height

Summary

- Using rotations we can maintain height balanced binary search trees
- All operations on search trees then take O(log n) time