DESIGN AND ANALYSIS
OF ALGORITHMS

Balanced search trees

http://www.cmi.ac.in/~madhavan

Binary search trees
O(n))

Find O(log n O(log n)
Min O(1) O(1) O(log n)
Max O(n) O(1) O(log n)
Insert O(log n) O(n) O(log n)
Delete O(log n) O(n) O(log n)
HTe O(n) O(1) O(log n)
Succ O(n) O(1) O(log n)

Complexity

* All operations on search trees walk down a single
path

* \Worst-case: height of the tree
* Balanced trees: height is O(log n) for n nodes

* How to maintain balance as the tree grows and
shrinks?

Different notions of balance

* size(left) = size(right)
* Too rigid, only complete binary trees
* | size(left) - size(right) | < 1

* More manageable but difficult to incrementally
maintain this property

Helght balance

* height: number of nodes in longest path from root
to leaf

* empty tree: height = 0
* only root: height = 1

* | height(left) - height(right) | < 1
* Height balanced trees

* AVL trees (Adelson-Velsky and Landis)

Helgnt balance

* Slope of a node : height(left) - height(right)
* Balanced tree
* slope is within {-1,0,1} at each node
* [nsert(v)/delete(v) can disturb slope upto -2 or +2

* Sufficient to rebalance from slope {-2,-1,0,1,2} to
{-1,0,1}

* Rebalance bottom up — assume all lower nodes
are balanced

Unbalanced, slope +2

* Node x has
slope +2

* Assume left +2
and right
subtrees are

balanced
h+2

* All slopes In
{-1,0,+1}

Unbalanced, slope +2

* TL Is not
empty: expand

Unbalanced, slope +2

* TL Is not
empty: expand

+2

h+2

TLL TLR

Unbalanced, slope +2

* TL Is not
empty: expand

* Slope of y is in +2
{-1,0,+1}

* Bottom up
rebalancing

_ h+2
* Case analysis

TLL TLR

Unbalanced, slope +2

* Case 1: slope
of y is {0,+1}

* Rotate the tree 0, +1
right at x

h+1

TLL TLR

Unbalanced, slope +2

* Case 1: slope
of y is {0,+1}

* Rotate the tree
right at x

* Rebalanced! h+1

Unbalanced, slope +2

* Case 2: slope
ofy is {-1}

* Expand TLR

TLL TLR

Unbalanced, slope +2

* Case 2: slope
of yis {-1}

* Expand TLR

* Rotate left at y

TLL TLRL TLRR

Unbalanced, slope +2

* Case 2: slope
of y is {-1}
+2

* Rotate left at y +1,42 \
* Rotate right 0,41
nh-1] A

at x TR

* Expand TLF

[4 4

h

TLRR
h,h-1

TLRL

TLL

Unbalanced, slope +2

* Case 2: slope
of y is {-1}

* Expand TLK

i

* Rotate left aty

* Rotate right
at x h

Unbalanced, slope +2

* Case 1:
slope of y {0,+1}

* Rotate right at x +2

* Case 2:
slope of y {-1}

* Rotate left at y

* Rotate right at x

TLL TLR

Unbalanced, slope -2

* Case 1:
slope of y {-1,0}

* Rotate left at x

* Case 2:
slope of y {+1}

* Rotate right at y

* Rotate left at x

TRL TRR

Rotate rignt

function rotateright(t)

— F value

= t.left.value
Ll = t.left.left
L Ri= ¢ LaFt pignht
R = t.rignt

|

.value =y

.rrgnt = t.oleft
.right.value = x
lett = TLLE
.Pight.left = [LR
.right.right = TR

cf ot et ek ch eb] e X

Rotate left

function rotateleft(t)

y = t.value
Z = t.right. value

it e ko

L = t.left

LR = pright left

ERR =k riagnt . right

.value = z

left =t pight
.left.value =y
Jeftolett = Tl
ettt . right = LRl
Pight = #LRR

A

TLL TLRL TLRR

b}

TLL

TLRL

/®\

A

TLRR

Rebalance

function rebalance(t)

15 Gslopel(t) ==/
if (slopelt.left) == -1)
rotateleft(t.left)
rotateright(t)

if Cslope(t) == -7)
1f (slopett . right) == 1)
rotateright(t.right)
rotateleft(t)

return

Balanced insert(v)

function insert(t,v)

1t v < t.value)
i (. left —— NE)
t.left = Node(v); t.left.parent = t; return
else
insert(t.left,v); rebalance(t.left); return
else
iF (t.pight == NIl)
t.right = Node(v); t.right.parent = t; return
else
insert(t.right,v); rebalance(t.right); return

Balanced delete(v)

function delete(t,v)

Recursive cases, t.value != v
1 (v b .valie)
if (b .left 1= NI
delete(t.left,v); rebalance(t.left)
return

it v >t valige)
1 (E:raight 1= NEH)
delete(t.right,v); rebalance(t.left)
return

Balanced delete(v)

Delete node with two children
Copy pred(v) 1nto current node

pv = pred(v)
t.value = pv

Delete pv from left subtree
— pv either leaf or has single child

delete(t.left,pv)
rebalance(t.left)

Computing slope

function height(t)

* slope =
height(left) - LE Lk —— NIlL)
height(right) return(0)
* Can compute height return(
recursively, on demand 1+
max(
* Takes time O(n)! height(t.left),
height(t.right))
* Needs to traverse)

entire tree!

Computing slope

* Instead, maintain function insert(t,v)

additional value

t.height in each node else
_ _ 1hserE(E left v’
* Update t.nheight with rebalance(t.left);

each insert or delete t.height = 1 +

* Computing slope is max (
now O(1) t.left.height,
t.right.height

)

Summary

* Using rotations we can maintain height balanced
binary search trees

* All operations on search trees then take O(log n)
time

