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Binary search trees
Heap Sorted array Search tree

Find O(n) O(log n) O(log n)

Min O(1) O(1) O(log n)

Max O(n) O(1) O(log n)

Insert O(log n) O(n) O(log n)

Delete O(log n) O(n) O(log n)

Pred O(n) O(1) O(log n)

Succ O(n) O(1) O(log n)



Complexity

All operations on search trees walk down a single 
path


Worst-case: height of the tree


Balanced trees: height is O(log n) for n nodes


How to maintain balance as the tree grows and 
shrinks?



Different notions of balance

size(left) = size(right)


Too rigid, only complete binary trees


| size(left) - size(right) | ≤ 1


More manageable but difficult to incrementally 
maintain this property



Height balance
height: number of nodes in longest path from root 
to leaf


empty tree: height = 0


only root: height = 1


| height(left) - height(right) | ≤ 1


Height balanced trees


AVL trees (Adelson-Velsky and Landis)



Height balance
Slope of a node : height(left) - height(right)


Balanced tree


slope is within {-1,0,1} at each node


insert(v)/delete(v) can disturb slope upto -2 or +2


Sufficient to rebalance from slope {-2,-1,0,1,2} to 
{-1,0,1}


Rebalance bottom up — assume all lower nodes 
are balanced



Unbalanced, slope +2
Node x has 
slope +2


Assume left 
and right 
subtrees are 
balanced 


All slopes in 
{-1,0,+1}
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Unbalanced, slope +2
TL is not 
empty: expand


Slope of y is in 
{-1,0,+1}


Bottom up 
rebalancing


Case analysis
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Unbalanced, slope +2

Case 1: slope  
of y is {0,+1}


Rotate the tree 
right at x
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Unbalanced, slope +2
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Case 1: slope  
of y is {0,+1}


Rotate the tree 
right at x


Rebalanced!



Unbalanced, slope +2

Case 2: slope  
of y is {-1}


Expand TLR
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Unbalanced, slope +2

Case 2: slope  
of y is {-1}


Expand TLR


Rotate left at y
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Unbalanced, slope +2

Case 2: slope 
of y is {-1}


Expand TLR


Rotate left at y


Rotate right 
at x
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Unbalanced, slope +2

Case 2: slope  
of y is {-1}


Expand TLR


Rotate left at y


Rotate right  
at x
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Unbalanced, slope +2
Case 1:  
slope of y {0,+1} 


Rotate right at x


Case 2: 
slope of y {-1}


Rotate left at y


Rotate right at x
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Unbalanced, slope -2
Case 1:  
slope of y {-1,0} 


Rotate left at x


Case 2: 
slope of y {+1}


Rotate right at y


Rotate left at x
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Rotate right
x
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function rotateright(t)

x = t.value  
y = t.left.value  
TLL = t.left.left  
TLR = t.left.right  
TR = t.right

t.value = y  
t.right = t.left  
t.right.value = x  
t.left = TLL  
t.right.left = TLR  
t.right.right = TR



Rotate left
function rotateleft(t)

y = t.value  
z = t.right.value  
TLL = t.left  
TLRL = t.right.left  
TLRR = t.right.right

t.value = z  
t.left = t.right  
t.left.value = y  
t.left.left = TLL  
t.left.right = TLRL  
t.right = TLRR
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Rebalance
function rebalance(t)

if (slope(t) == 2)  
  if (slope(t.left) == -1)  
    rotateleft(t.left)  
  rotateright(t)

if (slope(t) == -2)  
  if (slope(t.right) == 1)  
    rotateright(t.right)  
  rotateleft(t)

return



Balanced insert(v)
function insert(t,v)  
. . .

if (v < t.value)  
  if (t.left == NIL)  
    t.left = Node(v); t.left.parent = t; return  
  else  
    insert(t.left,v); rebalance(t.left); return  
else  
  if (t.right == NIL)  
    t.right = Node(v); t.right.parent = t; return  
  else  
    insert(t.right,v); rebalance(t.right); return



Balanced delete(v)
function delete(t,v)

. . .

# Recursive cases, t.value != v  
if (v < t.value)  
  if (t.left != NIL)  
    delete(t.left,v); rebalance(t.left)  
  return

if (v > t.value)  
  if (t.right != NIL)  
    delete(t.right,v); rebalance(t.left)  
  return



Balanced delete(v)
# Delete node with two children  
# Copy pred(v) into current node

pv = pred(v)  
t.value = pv

# Delete pv from left subtree  
# — pv either leaf or has single child

delete(t.left,pv)  
rebalance(t.left)



Computing slope
slope = 
     height(left) -  
     height(right)


Can compute height 
recursively, on demand


Takes time O(n)!


Needs to traverse 
entire tree!

function height(t)

if (t == NIL)  
  return(0)

return(  
  1 +  
  max(  
    height(t.left),  
    height(t.right))  
  )



Computing slope

Instead, maintain 
additional value 
t.height in each node


Update t.height with 
each insert or delete


Computing slope is 
now O(1)

function insert(t,v)  
 . . .  
 else  
   insert(t.left,v);   
   rebalance(t.left);  
   t.height = 1 +  
     max(  
       t.left.height,  
       t.right.height  
     )



Summary

Using rotations we can maintain height balanced 
binary search trees


All operations on search trees then take O(log n) 
time


