
DESIGN AND ANALYSIS  
OF ALGORITHMS
Balanced search trees

MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE
http://www.cmi.ac.in/~madhavan

NPTEL MOOC,JAN-FEB 2015
Week 6, Module 2

http://www.cmi.ac.in/~madhavan

Binary search trees
Heap Sorted array Search tree

Find O(n) O(log n) O(log n)

Min O(1) O(1) O(log n)

Max O(n) O(1) O(log n)

Insert O(log n) O(n) O(log n)

Delete O(log n) O(n) O(log n)

Pred O(n) O(1) O(log n)

Succ O(n) O(1) O(log n)

Complexity

All operations on search trees walk down a single
path

Worst-case: height of the tree

Balanced trees: height is O(log n) for n nodes

How to maintain balance as the tree grows and
shrinks?

Different notions of balance

size(left) = size(right)

Too rigid, only complete binary trees

| size(left) - size(right) | ≤ 1

More manageable but difficult to incrementally
maintain this property

Height balance
height: number of nodes in longest path from root
to leaf

empty tree: height = 0

only root: height = 1

| height(left) - height(right) | ≤ 1

Height balanced trees

AVL trees (Adelson-Velsky and Landis)

Height balance
Slope of a node : height(left) - height(right)

Balanced tree

slope is within {-1,0,1} at each node

insert(v)/delete(v) can disturb slope upto -2 or +2

Sufficient to rebalance from slope {-2,-1,0,1,2} to
{-1,0,1}

Rebalance bottom up — assume all lower nodes
are balanced

Unbalanced, slope +2
Node x has
slope +2

Assume left
and right
subtrees are
balanced

All slopes in
{-1,0,+1}

+2

hh+2

x

TL
TR

Unbalanced, slope +2

TL is not
empty: expand 
 
 
 
 
 
 

+2

h

x

TR
TL

h+2

Unbalanced, slope +2

TL is not
empty: expand 
 
 
 
 
 
 

+2

h

h+2

x

TLL

TR

y

TLR

Unbalanced, slope +2
TL is not
empty: expand

Slope of y is in
{-1,0,+1}

Bottom up
rebalancing

Case analysis

+2

h

h+2

x

TLL

TR

y

TLR

Unbalanced, slope +2

Case 1: slope
of y is {0,+1}

Rotate the tree
right at x

+2

h

h+1

x

TLL

TR

y

TLR

0, +1

h+1, h

Unbalanced, slope +2

h
h+1

x

TLL
TR

y

TLR

h+1, h

0,+1

-1,0
Case 1: slope
of y is {0,+1}

Rotate the tree
right at x

Rebalanced!

Unbalanced, slope +2

Case 2: slope
of y is {-1}

Expand TLR

+2

h

h

x

TLL

TR

y

TLR

-1

h+1

Unbalanced, slope +2

Case 2: slope
of y is {-1}

Expand TLR

Rotate left at y

+2

h

h

x

TLL

TR

y-1

z

TLRL TLRR
h,h-1

Unbalanced, slope +2

Case 2: slope 
of y is {-1}

Expand TLR

Rotate left at y

Rotate right 
at x

+2

h

h

x

TLL

TR

y

+1,+2 z

TLRL

TLRR
h,h-1

h,h-1
0,+1

Unbalanced, slope +2

Case 2: slope
of y is {-1}

Expand TLR

Rotate left at y

Rotate right  
at x

0

h
h

x

TLL
TR

z

0,+1 y

TLRL

TLRR
h,h-1

h,h-1

-1,0

Unbalanced, slope +2
Case 1:  
slope of y {0,+1}

Rotate right at x

Case 2: 
slope of y {-1}

Rotate left at y

Rotate right at x

+2 x

TLL

TR

y

TLR

Unbalanced, slope -2
Case 1:  
slope of y {-1,0}

Rotate left at x

Case 2: 
slope of y {+1}

Rotate right at y

Rotate left at x

-2 x

TRL

TL

y

TRR

Rotate right
x

TLL

TR

y

TLR
x

TLL
TR

y

TLR

function rotateright(t)

x = t.value  
y = t.left.value  
TLL = t.left.left  
TLR = t.left.right  
TR = t.right

t.value = y  
t.right = t.left  
t.right.value = x  
t.left = TLL  
t.right.left = TLR  
t.right.right = TR

Rotate left
function rotateleft(t)

y = t.value  
z = t.right.value  
TLL = t.left  
TLRL = t.right.left  
TLRR = t.right.right

t.value = z  
t.left = t.right  
t.left.value = y  
t.left.left = TLL  
t.left.right = TLRL  
t.right = TLRR

TLL

y

z

TLRL TLRR

y
z

TLRLTLL

TLRR

Rebalance
function rebalance(t)

if (slope(t) == 2)  
 if (slope(t.left) == -1)  
 rotateleft(t.left)  
 rotateright(t)

if (slope(t) == -2)  
 if (slope(t.right) == 1)  
 rotateright(t.right)  
 rotateleft(t)

return

Balanced insert(v)
function insert(t,v)  
. . .

if (v < t.value)  
 if (t.left == NIL)  
 t.left = Node(v); t.left.parent = t; return  
 else  
 insert(t.left,v); rebalance(t.left); return  
else  
 if (t.right == NIL)  
 t.right = Node(v); t.right.parent = t; return  
 else  
 insert(t.right,v); rebalance(t.right); return

Balanced delete(v)
function delete(t,v)

. . .

Recursive cases, t.value != v  
if (v < t.value)  
 if (t.left != NIL)  
 delete(t.left,v); rebalance(t.left)  
 return

if (v > t.value)  
 if (t.right != NIL)  
 delete(t.right,v); rebalance(t.left)  
 return

Balanced delete(v)
Delete node with two children  
Copy pred(v) into current node

pv = pred(v)  
t.value = pv

Delete pv from left subtree  
— pv either leaf or has single child

delete(t.left,pv)  
rebalance(t.left)

Computing slope
slope = 
 height(left) -  
 height(right)

Can compute height
recursively, on demand

Takes time O(n)!

Needs to traverse
entire tree!

function height(t)

if (t == NIL)  
 return(0)

return( 
 1 +  
 max( 
 height(t.left),  
 height(t.right))  
)

Computing slope

Instead, maintain
additional value
t.height in each node

Update t.height with
each insert or delete

Computing slope is
now O(1)

function insert(t,v)  
 . . .  
 else  
 insert(t.left,v);  
 rebalance(t.left);  
 t.height = 1 +  
 max( 
 t.left.height,  
 t.right.height  
)

Summary

Using rotations we can maintain height balanced
binary search trees

All operations on search trees then take O(log n)
time

