
DESIGN AND ANALYSIS  
OF ALGORITHMS
Search trees

MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE
http://www.cmi.ac.in/~madhavan

NPTEL MOOC,JAN-FEB 2015
Week 6, Module 1

http://www.cmi.ac.in/~madhavan

Example: Air traffic control
Flights arrive and depart at an airport

Single runway — reserve slots for landing / takeoff

Requests for slots come in arbitrary order

Trivandrum-Chennai, Air India, 16:23

Chennai-Madurai, SpiceJet, 16:12

Delhi-Chennai, Indigo, 16:55

Port Blair Chennai, Jet Airways, 16:18

Give priority to flights with earliest usage time

Air traffic control … heaps?
Pending landing and
take off requests

16:23, 16:12,
16:55, 16:18,
16:43, 16:53

At 16:10, Chennai-
Madurai flight of
16:12 given
clearance to take off

16:12

16:23

16:18

16:43 16:55

16:53

Air traffic control … heaps?
16:12

16:23

16:18

16:43 16:55

16:53

Air traffic control … heaps?
Suppose we want
flights to be spaced
apart

Minimum of 3
minutes between
planes on runway

16:12

16:23

16:18

16:43 16:55

16:53

Air traffic control … heaps?
Suppose we want
flights to be spaced
apart

Minimum of 3
minutes between
planes on runway

Rule is violated

16:12

16:23

16:18

16:43 16:55

16:53

Air traffic control … heaps?
Suppose we want
flights to be spaced
apart

Minimum of 3
minutes between
planes on runway

Rule is violated

Requires O(n) scan
when inserting

16:12

16:23

16:18

16:43 16:55

16:53

Air traffic control … heaps?

If we could compute
predecessor and
successor, we could
check this easily

pred(16:18) = 16:12

succ(16:18) = 16:23

pred(16:53) = 16:43

succ(16:53) = 16:55

16:12

16:23

16:18

16:43 16:55

16:53

Air traffic control … heaps?

If we could compute
predecessor and
successor, we could
check this easily

pred(16:18) = 16:12

succ(16:18) = 16:23

pred(16:53) = 16:43

succ(16:53) = 16:55

16:12

16:23

16:18

16:43 16:55

16:53

Comparing data structures
Unsorted array Sorted array Min Heap

Min O(n) O(1) O(1)

Max O(n) O(1) O(n)

Insert O(1) O(n) O(log n)

Delete O(n) O(n) O(log n)

Pred O(n) O(1) O(n)

Succ O(n) O(1) O(n)

Binary search trees
Heap Sorted array Search tree

Find O(n) O(log n) O(log n)

Min O(1) O(1) O(log n)

Max O(n) O(1) O(log n)

Insert O(log n) O(n) O(log n)

Delete O(log n) O(n) O(log n)

Pred O(n) O(1) O(log n)

Succ O(n) O(1) O(log n)

Binary tree

Structure is not
constrained, unlike
heap

At each node

Value

Link to parent, left
child, right child

5

2

1 4

8

9

Binary tree

Structure is not
constrained, unlike
heap

At each node

Value

Link to parent, left
child, right child

5

2

1 4

8

9

root

Binary tree

Structure is not
constrained, unlike
heap

At each node

Value

Link to parent, left
child, right child

5

2

1 4

8

9

root

leaf

Binary tree

Structure is not
constrained, unlike
heap

At each node

Value

Link to parent, left
child, right child

5

2

1 4

8

9

root

leaf
left 

child

parent

right 
child

Binary search tree

For each node with
value v

Values in left
subtree < v

Values in right
subtree > v

No duplicate values

5

2

1 4

8

9

Binary search tree

For each node with
value v

Values in left
subtree < v

Values in right
subtree > v

No duplicate values

5

2

1 4

8

9

Binary search tree

For each node with
value v

Values in left
subtree < v

Values in right
subtree > v

No duplicate values

5

2

1 4

8

9

Binary search tree

For each node with
value v

Values in left
subtree < v

Values in right
subtree > v

No duplicate values

5

2

1 4

8

9

Binary search tree

For each node with
value v

Values in left
subtree < v

Values in right
subtree > v

No duplicate values

5

2

1 4

8

9

Binary search tree
Implement using pointers

5

2

1 4

8

9

5

8

9

2

1

4

NIL

NIL

NIL NIL

NIL NIL

NIL NIL

value parent left right

Inorder traversal
function inOrder(t)

if (t != NIL)

 inOrder(t.left)

 print(t.value)

 inOrder(t.right)

5

2

1 4

8

9

Inorder traversal
function inOrder(t)

if (t != NIL)

 inOrder(t.left)

 print(t.value)

 inOrder(t.right)

5

2

1 4

8

9

Inorder traversal
function inOrder(t)

if (t != NIL)

 inOrder(t.left)

 print(t.value)

 inOrder(t.right)

5

2

1 4

8

9

Inorder traversal
function inOrder(t)

if (t != NIL)

 inOrder(t.left)

 print(t.value)

 inOrder(t.right)

5

2

1 4

8

9

Inorder traversal
function inOrder(t)

if (t != NIL)

 inOrder(t.left)

 print(t.value)

 inOrder(t.right)

5

2

1 4

8

9

1

Inorder traversal
function inOrder(t)

if (t != NIL)

 inOrder(t.left)

 print(t.value)

 inOrder(t.right)

5

2

1 4

8

9

1 2

Inorder traversal
function inOrder(t)

if (t != NIL)

 inOrder(t.left)

 print(t.value)

 inOrder(t.right)

5

2

1 4

8

9

1 2 4

Inorder traversal
function inOrder(t)

if (t != NIL)

 inOrder(t.left)

 print(t.value)

 inOrder(t.right)

5

2

1 4

8

9

1 2 4 5

Inorder traversal
function inOrder(t)

if (t != NIL)

 inOrder(t.left)

 print(t.value)

 inOrder(t.right)

5

2

1 4

8

9

1 2 4 5 8

Inorder traversal
function inOrder(t)

if (t != NIL)

 inOrder(t.left)

 print(t.value)

 inOrder(t.right)

5

2

1 4

8

9

1 2 4 5 8 9

Lists values in sorted order

find(v)
function find(t,v)

if (t == NIL)  
 return(False)

if (t.value == v)  
 return(True)

if (v < t.value)  
 return(find(t.left,v))  
else  
 return(find(t.right,v))

Recursive

find(v)
function find(t,v)

if (t == NIL)  
 return(False)

if (t.value == v)  
 return(True)

if (v < t.value)  
 return(find(t.left,v))  
else  
 return(find(t.right,v))

function find(t,v)

while (t != NIL) {

 if (t.value == v)  
 return(True)

 if (v < t.value)  
 t = t.left  
 else  
 t = t.right  
}

return(False)

Recursive Iterative

Minimum
Left most node in the tree

5

3

1 4

7

9

2 8

Minimum
Left most node in the tree

5

3

1 4

7

9

2 8

Minimum

function minval(t)

Assume t is not empty

if (t.left == NIL)  
 return(t.value)  
else  
 return(minval(t.left))  

Left most node in the tree

5

3

1 4

7

9

2 8

Recursive

Minimum

function minval(t)

Assume t is not empty

while (t.left != NIL)  
 t = t.left

return(t.value)

Left most node in the tree

5

3

1 4

7

9

2 8

Iterative

Maximum
Right most node in the tree

5

3

1 4

7

9

2 8

Maximum
Right most node in the tree

5

3

1 4

7

9

2 8

Maximum

function maxval(t)

Assume t is not empty

if (t.right == NIL)  
 return(t.value)  
else  
 return(maxval(t.right))  

Right most node in the tree

5

3

1 4

7

9

2 8

Recursive

Maximum

function maxval(t)

Assume t is not empty

while (t.right != NIL)  
 t = t.right

return(t.value)

Right most node in the tree

5

3

1 4

7

9

2 8

Iterative

Successor
succ(x) is what inorder(t)
prints after x

If x has a right subtree,
min(right subtree) x

left 
subtree

right 
subtree

t

Successor
succ(x) is what inorder(t)
prints after x

If x has a right subtree,
min(right subtree) succ

t

if x has no right subtree

x is max of the subtree it
belongs to

walk up to find where
this subtree is connected x

Successor
succ(x) is what inorder(t)
prints after x

If x has a right subtree,
min(right subtree) succ

t

if x has no right subtree

x is max of the subtree it
belongs to

walk up to find where
this subtree is connected x

Successor
succ(x) is what inorder(t)
prints after x

If x has a right subtree,
min(right subtree) succ

t

if x has no right subtree

x is max of the subtree it
belongs to

walk up to find where
this subtree is connected x

Successor
function succ(t)

if (t.right != NIL)  
 return(minval(t.right))

y = t.parent

while (y != NIL and t == y.right)  
 t = y  
 y = y.parent

return(y)

5

3

1 4

7

9

2 8

Successor
function succ(t)

if (t.right != NIL)  
 return(minval(t.right))

y = t.parent

while (y != NIL and t == y.right)  
 t = y  
 y = y.parent

return(y)

5

3

1 4

7

9

2 8

Successor
function succ(t)

if (t.right != NIL)  
 return(minval(t.right))

y = t.parent

while (y != NIL and t == y.right)  
 t = y  
 y = y.parent

return(y)

5

3

1 4

7

9

2 8

Predecessor

function pred(t)

if (t.left != NIL)  
 return(maxval(t.left))

y = t.parent

while (y != NIL and t == y.left)  
 t = y  
 y = y.parent

return(y)

5

3

1 4

7

9

2 8

Symmetric

Predecessor

function pred(t)

if (t.left != NIL)  
 return(maxval(t.left))

y = t.parent

while (y != NIL and t == y.left)  
 t = y  
 y = y.parent

return(y)

5

3

1 4

7

9

2 8

Symmetric

Predecessor

function pred(t)

if (t.left != NIL)  
 return(maxval(t.left))

y = t.parent

while (y != NIL and t == y.left)  
 t = y  
 y = y.parent

return(y)

5

3

1 4

7

9

2 8

Symmetric

Predecessor

function pred(t)

if (t.left != NIL)  
 return(maxval(t.left))

y = t.parent

while (y != NIL and t == y.left)  
 t = y  
 y = y.parent

return(y)

5

3

1 4

7

9

2 8

Symmetric

Insert

Try to find v

If it is not present, add it
where the search fails

52

37

16 44

74

91

28 83

Insert

Try to find v

If it is not present, add it
where the search fails

52

37

16 44

74

91

28 83

Insert 21

Insert

Try to find v

If it is not present, add it
where the search fails

52

37

16 44

74

91

28 83

Insert 21

Insert

Try to find v

If it is not present, add it
where the search fails

52

37

16 44

74

91

28 83

Insert 21

21

Insert

Try to find v

If it is not present, add it
where the search fails

52

37

16 44

74

91

28 83

21

Insert

Try to find v

If it is not present, add it
where the search fails

52

37

16 44

74

91

28 83

21

Insert 65

Insert

Try to find v

If it is not present, add it
where the search fails

52

37

16 44

74

91

28 83

21

Insert 65

Insert

Try to find v

If it is not present, add it
where the search fails

52

37

16 44

74

91

28 83

21

Insert 65

65

Insert

Try to find v

If it is not present, add it
where the search fails

52

37

16 44

74

91

28 83

21

65

Insert

Try to find v

If it is not present, add it
where the search fails

52

37

16 44

74

91

28 83

21

65

Insert 91

Insert

Try to find v

If it is not present, add it
where the search fails

52

37

16 44

74

91

28 83

21

65

Insert 91

insert(v)
function insert(t,v)

if (t == NIL)  
 t = Node(v); return # Node(v) : isolated node, value v

if (t.value == v) return

if (v < t.value)  
 if (t.left == NIL) # Add a left child with value v  
 t.left = Node(v); t.left.parent = t; return  
 else # Recursively insert in left subtree  
 insert(t.left,v); return  
else  
 if (t.right == NIL) # Add a right child with value v  
 t.right = Node(v); t.right.parent = t; return  
 else # Recursively insert in right subtree  
 insert(t.right,v)

Delete
If v is present, delete it

If deleted node is a leaf, done

If deleted node has only one
child, “promote” that child

If deleted node has two
children, fill in the hole with
pred(v) or succ(v)

Delete pred(v) / succ(v)

Either leaf or only one child

52

37

16 44

74

91

28 83

21

65

Delete
If v is present, delete it

If deleted node is a leaf, done

If deleted node has only one
child, “promote” that child

If deleted node has two
children, fill in the hole with
pred(v) or succ(v)

Delete pred(v) / succ(v)

Either leaf or only one child

52

37

16 44

74

91

28 83

21

65

Delete 65

Delete
If v is present, delete it

If deleted node is a leaf, done

If deleted node has only one
child, “promote” that child

If deleted node has two
children, fill in the hole with
pred(v) or succ(v)

Delete pred(v) / succ(v)

Either leaf or only one child

52

37

16 44

74

91

28 83

21

Delete 65

65

Delete
If v is present, delete it

If deleted node is a leaf, done

If deleted node has only one
child, “promote” that child

If deleted node has two
children, fill in the hole with
pred(v) or succ(v)

Delete pred(v) / succ(v)

Either leaf or only one child

52

37

16 44

74

91

28 83

21

Delete 65

Delete
If v is present, delete it

If deleted node is a leaf, done

If deleted node has only one
child, “promote” that child

If deleted node has two
children, fill in the hole with
pred(v) or succ(v)

Delete pred(v) / succ(v)

Either leaf or only one child

52

37

16 44

74

91

28 83

21

Delete 74

Delete
If v is present, delete it

If deleted node is a leaf, done

If deleted node has only one
child, “promote” that child

If deleted node has two
children, fill in the hole with
pred(v) or succ(v)

Delete pred(v) / succ(v)

Either leaf or only one child

52

37

16 44 91

28 83

21

Delete 74

74

Delete
If v is present, delete it

If deleted node is a leaf, done

If deleted node has only one
child, “promote” that child

If deleted node has two
children, fill in the hole with
pred(v) or succ(v)

Delete pred(v) / succ(v)

Either leaf or only one child

52

37

16 44

28

21

Delete 74

91

83

Delete
If v is present, delete it

If deleted node is a leaf, done

If deleted node has only one
child, “promote” that child

If deleted node has two
children, fill in the hole with
pred(v) or succ(v)

Delete pred(v) / succ(v)

Either leaf or only one child

52

37

16 44

28

21

91

83

Delete 37

Delete
If v is present, delete it

If deleted node is a leaf, done

If deleted node has only one
child, “promote” that child

If deleted node has two
children, fill in the hole with
pred(v) or succ(v)

Delete pred(v) / succ(v)

Either leaf or only one child

52

16 44

28

21

91

83

Delete 37

37

Delete
If v is present, delete it

If deleted node is a leaf, done

If deleted node has only one
child, “promote” that child

If deleted node has two
children, fill in the hole with
pred(v) or succ(v)

Delete pred(v) / succ(v)

Either leaf or only one child

52

16 44

21

91

83

Delete 37

37

28

Delete
If v is present, delete it

If deleted node is a leaf, done

If deleted node has only one
child, “promote” that child

If deleted node has two
children, fill in the hole with
pred(v) or succ(v)

Delete pred(v) / succ(v)

Either leaf or only one child

52

16 44

21

91

83

Delete 37

28

28

Delete
If v is present, delete it

If deleted node is a leaf, done

If deleted node has only one
child, “promote” that child

If deleted node has two
children, fill in the hole with
pred(v) or succ(v)

Delete pred(v) / succ(v)

Either leaf or only one child

52

16 44

91

83

Delete 37

28

21

Delete
If v is present, delete it

If deleted node is a leaf, done

If deleted node has only one
child, “promote” that child

If deleted node has two
children, fill in the hole with
pred(v) or succ(v)

Delete pred(v) / succ(v)

Either leaf or only one child

52

16 44

91

83

28

21

delete(v)
function delete(t,v)

if (t == NIL) return

Recursive cases, t.value != v  
if (v < t.value)  
 if (t.left != NIL)  
 delete(t.left,v)  
 return

if (v > t.value)  
 if (t.right != NIL)  
 delete(t.right,v)  
 return

delete(v)
t.value == v, delete here

Delete root  
if (t.parent == NIL)  
 t = NIL  
 return

Delete leaf  
if (t.left == NIL and t.right == NIL)  
 if (t = t.parent.left)  
 t.parent.left = NIL  
 else  
 t.parent.right = NIL  
 return

Delete node with one child

Only left child

if (t.left != NIL and t.right == NIL)  
 t.left.parent = t.parent  
 if (t == t.parent.left)  
 t.parent.left = t.left  
 else  
 t.parent.right = t.left  
 return

delete(v)

Delete node with one child

Only right child

if (t.left == NIL and t.right != NIL)  
 t.right.parent = t.parent  
 if (t == t.parent.left)  
 t.parent.left = t.right  
 else  
 t.parent.right = t.right  
 return

delete(v)

Delete node with two children

Copy pred(v) into current node

pv = pred(v)  
t.value = pv

Delete pv from left subtree  
— pv either leaf or has single child

delete(t.left,pv)

delete(v)

Complexity

All operations on search trees walk down a single
path

Worst-case: height of the tree

Balanced trees: height is O(log n) for n nodes

Will see later how to maintain balance

Summary
Heap Sorted array Search tree

Find O(n) O(log n) O(log n)

Min O(1) O(1) O(log n)

Max O(n) O(1) O(log n)

Insert O(log n) O(n) O(log n)

Delete O(log n) O(n) O(log n)

Pred O(n) O(1) O(log n)

Succ O(n) O(1) O(log n)

