DESIGN AND ANALYSIS
OF ALGORITHMS

Search trees

http://www.cmi.ac.in/~madhavan

Example: Alr traffic control

* Flights arrive and depart at an airport
* Single runway — reserve slots for landing / takeoft

* Requests for slots come in arbitrary order

* Trivandrum-Chennai, Air India, 16:23
* Chennai-Madurali, Spicedet, 16:12
* Delhi-Chennai, Indigo, 16:55

* Port Blair Chennai, Jet Airways, 16:18

* Give priority to flights with earliest usage time

Alr traffic control ... heaps”

* Pending landing and
take off requests
* 16:23, 16:12, / \
16:55, 16:18,
16:43, 16:53

* At 16:10, Chennai- \

Madural flight of
16:12 given
clearance to take off

Alr traffic control ... heaps”

/\

Alr traffic control ... heaps”

* Suppose we want
flights to be spaced
apart / \
* Minimum of 3
minutes between

planes on runway \

Alr traffic control ... heaps”

* Suppose we want
flights to be spaced
apart / \
* Minimum of 3
minutes between

planes on runway \

* Rule is violated @ @

A

Alr traffic control ... heaps”

* Suppose we want
flights to be spaced
apart / \
* Minimum of 3
minutes between

planes on runway \

* Rule is violated @ @
* Requires O(n) scan

when inserting +

Alr traffic control ... heaps”

* |f we could compute

predecessor and /

successor, we could \
check this easily
* pred(16:18) = 16:12

* succ(16:18) = 16:23 \

* pred(16:53) = 16:43 @ @
* succ(16:53) = 16:55

A

Alr traffic control ... heaps”

* |f we could compute

predecessor and /

successor, we could \
check this easily
* pred(16:18) = 16:12

* succ(16:18) = 16:23 \

* pred(16:53) = 16:43 @ @
* succ(16:53) = 16:55 |

A

Comparing data structures

O(n) O(1) O(1)

Min
Max
Insert
Delete
Pred

Succ

Binary search trees
O(n))

Find O(log n O(log n)
Min O(1) O(1) O(log n)
Max O(n) O(1) O(log n)
Insert O(log n) O(n) O(log n)
Delete O(log n) O(n) O(log n)
HTe O(n) O(1) O(log n)
Succ O(n) O(1) O(log n)

Binary tree

* Structure is not
constrained, unlike
heap

* At each node
* \alue

* Link to parent, left
child, right child

Binary tree

* Structure is not
constrained, unlike
heap

* At each node
* \alue

* Link to parent, left
child, right child

Binary tree

* Structure is not
root
constrained, unlike @
heap \\\
* At each node
* \alue

* Link to parent, left

leaf
child, right child

Binary tree

* Structure is not
root
constrained, unlike @
heap \\\
* At each node parent
* \alue

* Link to parent, left

leaf
child, right child

left right
child child

Binary search tree

* For each node with

value v @
* Values in left \
subtree < v

* \alues In right
subtree > v

* No duplicate values

Binary search tree

* For each node with
value v

* Values In left
subtree < v

* \alues In right
subtree > v

* No duplicate values

Binary search tree

* For each node with
value v

* Values In left
subtree < v

* \alues In right
subtree > v

* No duplicate values

Binary search tree

* For each node with

value v @
* Values in left \
subtree < v

* \alues In right /

subtree > v
* No duplicate values @

Binary search tree

* For each node with

value v @
* Values in left \
subtree < v

* \alues In right \

subtree > v
* No duplicate values @

Binary search tree

* I[mplement using pointers

value parent left right

9

NIL

NIL

NIL

NIL

R

Inorder traversal

function 1nOrder(t)

1£ (F = NI
1nOrder(t.left)
print(t.value)
1nOrder(t.right)

Inorder traversal

function 1nOrder(t)

1£ (F = NI
1nOrder(t.left)
print(t.value)
1nOrder(t.right)

Inorder traversal

function 1nOrder(t)

1£ (F = NI
1nOrder(t.left)
print(t.value)
1nOrder(t.right)

Inorder traversal

function 1nOrder(t)

1£ (F = NI
1nOrder(t.left)
print(t.value)
1nOrder(t.right)

Inorder traversal

function 1nOrder(t)

1£ (F = NI
1nOrder(t.left)
print(t.value)
1nOrder(t.right)

Inorder traversal

function 1nOrder(t)

1£ (F = NI
1nOrder(t.left)
print(t.value)
1nOrder(t.right)

Inorder traversal

function 1nOrder(t)

1£ (F = NI
1nOrder(t.left)
print(t.value)
1nOrder(t.right)

Inorder traversal

function 1nOrder(t)

1£ (F = NI
1nOrder(t.left)
print(t.value)
1nOrder(t.right)

=

1 2 4 5

Inorder traversal

function 1nOrder(t)

1£ (F = NI
1nOrder(t.left)
print(t.value)
1nOrder(t.right)

i 2 4 5 8

Inorder traversal

function 1nOrder(t)

1£ (F = NI
1nOrder(t.left)
print(t.value)
1nOrder(t.right)

* |Lists values in sorted order

1 2 4 5 8 9

find(v)

Recursive
function find(t,v)

1f L = NEI)
return(False)

i (Evalte =— V)
return(True)

1f (v < t.value)
return(find(t.left,v))

else
return(find(t.right,v))

find(v)

Recursive
function find(t,v)

1f L = NEI)
return(False)

i (Evalte =— V)
return(True)

1f (v < t.value)
return(find(t.left,v))

else
return(find(t.right,v))

Iterative
function find(t,v)

while Gt = NIL) {

1t value — v)
return(True)

1f (v < t.value)

t = t.left
else
=t . Prght

¥

return(False)

Minimum

* |eft most node in the tree

Minimum

* |eft most node in the tree

Minimum
* |eft most node In the tree

Recursive

function minval(t)
Assume t 1s not empty

1f (t.left == NIL)
return(t.value)

else
return(minval(t.left))

Minimum
* |eft most node In the tree

lterative

function minval(t)
Assume t 1s not empty

While ¢t . 1eft 1= NIE)
¢ left

return(t.value)

VMaximum

* Right most node in the tree

VMaximum

* Right most node in the tree

(5)

s
‘D

VMaximum

* Right most node in the tree

Recursive

function maxval(t)
Assume t 1s not empty

f (t.right == NIL)
return(t.value)

else
return(maxval(t.right))

VMaximum

* Right most node in the tree

lterative

function maxval(t)
Assume t 1s not empty

while (t.right != NIL)
t = t.right

return(t.value)

SUCCEessor

* succ(x) is what inorder(t) t
prints after x

* |f X has a right subtree,

min(right subtree) @

left right
subtree subtree

SUCCEessor

* succ(x) is what inorder(t)
prints after x

* |f X has a right subtree,
min(right subtree)

* |f X has no right subtree

* X IS max of the subtree it
belongs to

* walk up to find where
this subtree Is connected

SUCCEessor

* succ(x) is what inorder(t)
prints after x

* |f X has a right subtree,

min(right subtree) @
* if x has no right subtree L
* X is max of the subtree it .

belongs to

* walk up to find where
this subtree is connected - CD/CD

SUCCEessor

* succ(x) is what inorder(t)
prints after x

* |f X has a right subtree,

min(right subtree)

* if X has no right subtree = 4
* X is max of the subtree it e

belongs to

* walk up to find where ;
this subtree is connected -

SUCCessor

function succ(t) /// \\\

1ECt right = NIl <:> <:>
return(minval(t.right)) (w \
¥ = L.parent \\ //
woltle Cy 1= NIl and £ = -y . right) @
t Y
y = y.parent

return(y)

SUCCessor

function succ(t) /// \\\

1ECt right = NIl | <:> <:>
return(minval(t.right)) (\ E
¥ = L.parent \\ //
woltle Cy 1= NIl and £ = -y . right) @
t Y
y = y.parent

return(y)

SUCCessor

function succ(t) //;:2\
1F (b pight = NIl) <:>
return(minval(t.right)) <:{/ \}:> \>:>

¥ = L.parent \ (
(y 1= NIl ané t ==y pight) <:> ()

while
=y
y = y.parent

return(y)

Pregdecessor

* Symmetric

function pred(t)

i Ct leff - Nil) <:{/ \}:> \§:>

return(maxval(t.left))
y = t.pdrent

while (y != NIL and t == y.left)

=
y = y.parent

return(y)

Pregdecessor

* Symmetric / \

function pred(t)
1f (t.left != NIL) || \>:>

return(maxval(t.left)) \\
y = t.pdrent <:>
while (y != NIL and t == y.left)

=

y = y.parent

return(y)

Pregdecessor

* Symmetric

function pred(t)

i Ct leff - Nil) <:{/ \}:> \§:>

return(maxval(t.left))
y = t.pdrent

while (y != NIL and t == y.left)

=
y = y.parent

return(y)

Pregdecessor

* Symmetric /@D\

function pred(t) (3,
1f (t.left !'= NIL) 6{ %

return(maxval(t.left)) \\
y = t.pdrent <:>
while (y != NIL and t == y.left)

=

y = y.parent

return(y)

INnsert

* [ry to find v

* |f it is not present, add it
where the search fails @

INnsert

Insert 21
* [ry to find v
* |f it is not present, add it <2
where the search fails @

INnsert

Insert 21
* [ry to find v

* |f it Is not present, a.dd it =2
where the search fails % (78)

INnsert

Insert 21
* [ry to find v
* |f it is not present, add it =2
where the search fails % @

o

INnsert

* [ry to find v

* |f it is not present, add it <2
where the search fails @

4%

/
@

INnsert

Insert 65

(52,

* [ry to find v

* |f it is not present, add it
where the search fails

<
4%

/
@

INnsert

Insert 65

(52,

* [ry to find v

* |f it is not present, add it
where the search fails

<
4%

/
@

INnsert

| Insert 65
* [ry to find v
* |f it is not present, add it o,
where the search fails (78)
DIC

/
@

INnsert

* [ry to find v

* |f it is not present, add it =,
where the search fails @

& ®b &

/
@

INnsert

Insert 91
* [ry to find v
* |f it is not present, add it =,
where the search fails @
(a0) (83

/
@

INnsert

Insert 91
* [ry to find v
* |f it is not present, add it 2
where the search fails @
(a0) (83

/
@

insert(v)

function insert(t,v)

1f (t == NIL)
t = Node(v); return # Node(v) : 1isolated node, value v

it Ct.ovalue. == vy return

1f (v < t.value)
1f (t.left == NIL) # Add a left child with value v
t.left = NodeCwv); t.left . parent = t; return

else # Recursively insert in left subtree
insert(t.left,v); return
else

tf Ctoright = NIl) # Add-a right child with value v
t.right = Node(v); t.right.parent = t; return

else # Recursively 1insert in right subtree
insert(t.right,v)

Delete

* |f v Is present, delete it
* |f deleted node is a leaf, done

* |f deleted node has only one
child, “promote” that child

* |f deleted node has two
children, fill in the hole with
pred(v) or succ(v)

* Delete pred(v) / succ(v)

* Either leaf or only one child

Delete

* |f v Is present, delete it
* |f deleted node is a leaf, done

* |f deleted node has only one
child, “promote” that child

* |f deleted node has two
children, fill in the hole with
pred(v) or succ(v)

* Delete pred(v) / succ(v)

* Either leaf or only one child

Delete 65

(52,
(74

& ®b &

/
@

Delete

* |f v Is present, delete it
* |f deleted node is a leaf, done

* |f deleted node has only one
child, “promote” that child

* |f deleted node has two
children, fill in the hole with
pred(v) or succ(v)

* Delete pred(v) / succ(v)

* Either leaf or only one child

Delete 65

(52,
(74

& b &

/
@

Delete

* |f v Is present, delete it
* |f deleted node is a leaf, done

* |f deleted node has only one
child, “promote” that child

* |f deleted node has two
children, fill in the hole with
pred(v) or succ(v)

* Delete pred(v) / succ(v)

* Either leaf or only one child

Delete 65

(52,

<
4%

/
@

Delete

* |f v Is present, delete it
* |f deleted node is a leaf, done

* |f deleted node has only one
child, “promote” that child

* |f deleted node has two
children, fill in the hole with
pred(v) or succ(v)

* Delete pred(v) / succ(v)

* Either leaf or only one child

Delete 74

(52,

<
4%

/
@

Delete

* |f v Is present, delete it
* |f deleted node is a leaf, done

* |f deleted node has only one
child, “promote” that child

* |f deleted node has two
children, fill in the hole with
pred(v) or succ(v)

* Delete pred(v) / succ(v)

* Either leaf or only one child

Delete 74

(52,

<
4%

/
@

Delete

* |f v Is present, delete it
* |f deleted node is a leaf, done

* |f deleted node has only one
child, “promote” that child

* |f deleted node has two
children, fill in the hole with
pred(v) or succ(v)

* Delete pred(v) / succ(v)

* Either leaf or only one child

Delete 74

C@\.

/ (9
o

/
@

Delete

* |f v Is present, delete it
* |f deleted node is a leaf, done

* |f deleted node has only one
child, “promote” that child

* |f deleted node has two
children, fill in the hole with
pred(v) or succ(v)

* Delete pred(v) / succ(v)

* Either leaf or only one child

Delete 37

C@\.

/ (9
o

/
@

Delete

* |f v Is present, delete it
* |f deleted node is a leaf, done

* |f deleted node has only one
child, “promote” that child

* |f deleted node has two
children, fill in the hole with
pred(v) or succ(v)

* Delete pred(v) / succ(v)

* Either leaf or only one child

Delete 37

C@\.

/ (9
o

/
@

Delete

* |f v Is present, delete it
* |f deleted node is a leaf, done

* |f deleted node has only one
child, “promote” that child

* |f deleted node has two
children, fill in the hole with
pred(v) or succ(v)

* Delete pred(v) / succ(v)

* Either leaf or only one child

Delete 37

C@\.

/ (9
o

/
@

Delete

* |f v Is present, delete it
* |f deleted node is a leaf, done

* |f deleted node has only one
child, “promote” that child

* |f deleted node has two
children, fill in the hole with
pred(v) or succ(v)

* Delete pred(v) / succ(v)

* Either leaf or only one child

Delete 37

C@\.

(28 (9
4 5%

/
@

Delete

* |f v Is present, delete it
* |f deleted node is a leaf, done

* |f deleted node has only one
child, “promote” that child

* |f deleted node has two
children, fill in the hole with
pred(v) or succ(v)

* Delete pred(v) / succ(v)

* Either leaf or only one child

Delete 37

Delete

* |f v Is present, delete it
* |f deleted node is a leaf, done

* |f deleted node has only one
child, “promote” that child

* |f deleted node has two
children, fill in the hole with
pred(v) or succ(v)

* Delete pred(v) / succ(v)

* Either leaf or only one child

delete(v)

function delete(t,v)
1 ¢t —— NIL) petdrh

Recursive cases, t.value != v
1 (v b .valie)
i Lt . lefl 1= NI
delete(t.left,v)
return

it v >t valige)
1f CE Pight 1="NEL)
delete(t.right,v)
return

delete(v)

t.value == v, delete here

Delete root

1t CE parent —= NI)
t = NIL
return

Delete leaf
18 (L et == Nl agnd & rPight = NI|)
1t Ct = t parent left)
t.parent.left = NIL
else
t.parent.right = NIL
return

delete(v)

Delete node with one child
Only left child

1B (k. lefk 1= NIl and t.right —= NIl)
t.left parent = t.parent
1t CE == | parent. left)
t . barent.left = t . left
else
t.parent pight = t left
return

delete(v)

Delete node with one child
Only right child

1t (. etk == NIl and t right 1= NIl)
t.right.parent = t.parent
1Pt == t parepnt left)
t parent.left = t right
else
t . parent rigat = t . right
return

delete(v)

Delete node with two children

Copy pred(v) into current node

pv = pred(v)
t.value = pv

Delete pv from left subtree
— pv either leaf or has single child

delete(t.left,pv)

Complexity

* All operations on search trees walk down a single
path

* \\Worst-case: height of the tree
* Balanced trees: height is O(log n) for n nodes

* \WIll see later how to maintain balance

Summary
O(n))

Find O(log n O(log n)
Min O(1) O(1) O(log n)
Max O(n) O(1) O(log n)
Insert O(log n) O(n) O(log n)
Delete O(log n) O(n) O(log n)
HTe O(n) O(1) O(log n)
Succ O(n) O(1) O(log n)

