
DESIGN AND ANALYSIS  
OF ALGORITHMS
Divide and conquer: Closest pair of points

MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE
http://www.cmi.ac.in/~madhavan

NPTEL MOOC,JAN-FEB 2015
Week 5, Module 7

http://www.cmi.ac.in/~madhavan

Example: Video game
Several objects on screen

Basic step: find closest pair of objects

Given n objects, naïve algorithm is O(n2)

For each pair of objects, compute their distance

Report minimum distance over all such pairs

There is a clever algorithm based on divide and
conquer that takes time O(n log n)

Formally
A point p is given by xy coordinates (xp,yp)

Distance between p1 = (x1,y1) and p2 = (x2,y2) is the usual

d(p1,p2) = √ ((x2 - x1)2 + (y2 - y1)2)

Given n points (p1,p2,…,pn), find the closest pair

Assume that no two points have same x or y coordinate

Brute force

Try every pair (pi,pj) and report minimum

O(n2)

In 1 dimension

A point p is given by x coordinate xp

d(pi,pj) = |pj - pi|

Given n points (p1,p2,…,pn)

Sort the points — O(n log n)

Compute minimum separation between
adjacent points after sorting — O(n)

2 dimensions,  
divide and conquer

Split set of points into two halves by vertical line

Recursively compute closest pair in left and right
half

Need to then compute closest pairs across
separating line

How can we do this efficiently?

Sorting points by x and y
Given n points P =
{p1,p2,…,pn}, compute

Px, P sorted by x
coordinate

Py, P sorted by y
coordinate

Divide P by vertical line
into equal size sets Q
and R

Need to efficiently
compute Qx, Qy, Rx, Ry

P

Sorting points by x and y
Given n points P =
{p1,p2,…,pn}, compute

Px, P sorted by x
coordinate

Py, P sorted by y
coordinate

Divide P by vertical line
into equal size sets Q
and R

Need to efficiently
compute Qx, Qy, Rx, Ry

P

RQ

Sorting points by x and y
Need to efficiently compute
Qx, Qy, Rx, Ry

Qx is first half of Px, Rx is
second half of Px

When splitting Px, note the
largest x coordinate in Q,
xQ

Separate Py as Qy, Ry by
checking x coordinate with
xQ

All O(n)

P

RQ

2 dimensions,  
divide and conquer

Basic recursive call is ClosestPair(Px,Py)

Set up recursive calls ClosestPair(Qx,Qy) and
ClosestPair(Rx,Ry) for left and right half of P in time
O(n)

How to combine these recursive solutions?

Combining solutions
Let dQ be closest
distance in Q and dR be
closest distance in R

Let d be min(dQ,dR)

Only need to consider
points across the
separator at most
distance d from separator

Any pair outside this
band cannot be closest
pair overall

P

RQ

dQ

dR

d

Combining solutions
Divide the distance d zone
into boxes of side d/2

Cannot have two points
in same box

Diagonal is √2d/2

Any point within distance d
must lie in a
neighbourhood of 4x4
boxes

Need to check each
point against 15 others

d/2

d/2

d

Combining solutions

From Qy, Ry, extract Sy,
points in d-band
sorted by y coordinate

Scan Sy from bottom
to top, comparing each
point against next 15
points in Sy

Linear scan

d/2

d/2

d

Algorithm
function ClosestPair(Px,Py)

if (|Px| <= 3)  
 compute pairwise distances and  
 return closest pair and distance

Construct (Qx,Qy,Rx,Ry)

(dQ,q1,q2) = ClosestPair(Qx,Qy)

(dR,r1,r2) = ClosestPair(Rx,Ry)

Construct Sy and scan to find (dS,s1,s2)

Return (dQ,q1,q2), (dR,r1,r2), (dS,s1,S2) depending
on which among (dQ,dR,dS) is minimum

Analysis
Computing (Px,Py) from P takes O(n log n)

Recursive algorithm

Setting up (Qx,Qy,Rx,Ry) from (Px,Py) is O(n)

Setting up Sy from Qy,Ry is O(n)

Scanning Sy is O(n)

Recurrence is same as merge sort

Overall T(n) = O(n log n)

