DESIGN AND ANALYSIS
OF ALGORITHMS

Divide and conquer: Closest pair of points

http://www.cmi.ac.in/~madhavan

Example: Video game

* Several objects on screen

* Basic step: find closest pair of objects

* Given n objects, naive algorithm is O(n?
* For each pair of objects, compute their distance
* Report minimum distance over all such pairs

* There Is a clever algorithm based on divide and
conquer that takes time O(n log n)

Formally

* A point p is given by xy coordinates (Xp,Yp)
* Distance between p1 = (Xx1,y1) and p2 = (X2,y2) is the usual
* d(p1,p2) =y (X2~ X1)° + (y2 - y1)°)
* Given n points (p1,p2,...,Pn), find the closest pair
* Assume that no two points have same X or y coordinate
* Brute force
* Try every pair (p;,p;) and report minimum

* O(n%)

IN 1 dimension

* A point p is given by X coordinate Xp
* d(pi,p)) = |pi - Pi

* Given n points (p1,p2,...,Pn)
* Sort the points — O(n log n)

* Compute minimum separation between
adjacent points after sorting — O(n)

2 dimensions,
divide and conguer

* Split set of points into two halves by vertical line

* Recursively compute closest pair in left and right
half

* Need to then compute closest pairs across
separating line

* How can we do this efficiently?

Sorting points by x and vy

* Given n points P =
{P1,P2,.. ., Pn}, cOmMpute .

* Py, P sorted by X .
coordinate

* Py, P sorted by y .
coordinate o

* Divide P by vertical line
into equal size sets Q
and R .

* Need to efficiently
compute Qyx, Qy, Rx, Ry 5

Sorting points by x and vy

* Given n points P =
{p1,p2,---,pn}, ComDUte ®

* Py, P sorted by X .
coordinate

* Py, P sorted by y .
coordinate o

* Divide P by vertical line
into equal size sets Q Q
and R

* Need to efficiently
compute Qyx, Qy, Rx, Ry 5

Sorting points by x and vy

* Need to efficiently compute
QX5 QY! RXs Ry @ o

* Qs first half of Py, Reis - -
second half of Py

* \When splitting Px, note the .
largest x coordinate in Q, .
XQ 2

* Separate Py as Qy, Ry by Q .
checking x coordinate with
XQ

* All O(n)

2 dimensions,
divide and conguer

* Basic recursive call is ClosestPair(Px,Py)

* Set up recursive calls ClosestPair(Qx,Qy) and
ClosestPair(Rx,Ry) for left and right half of P in time

O(n)

* How to combine these recursive solutions?

Combining solutions

* Let dq be closest
distance in Q and dgr be s
closest distance in R s

* et d be min(dq,dr) e

* Only need to consider .
points across the
separator at most
distance d from separator

* Any pair outside this -
band cannot be closest
pair overall 5

Combining solutions

* Divide the distance d zone
into boxes of side d/2

* Cannot have two points
IN same box

* Diagonal is /2d/2

* Any point within distance d
must lie in a
neighbourhood of 4x4
boxes

* Need to check each
point against 15 others

0000000000000000

oooooooooooooo

0000000000000000

0000000000000000

.................

0000000000000000

Combining solutions

* From Qy, Ry, extract Sy,
points in d-band
sorted by y coordinate

* Scan Sy from bottom
to top, comparing each
point against next 15
points in Sy

* Linear scan

0000000000000000

oooooooooooooo

0000000000000000

0000000000000000

.................

0000000000000000

Algorithm

function ClosestPair(Px,Py)

1f ClPxl == 3)
compute pairwise distances and
return closest pair and distance

Construct (Qx,Qy,Rx,Ry)

(dQ,gl1,g2) = ClosestPair(Qx,Qy)
(dR,rl1l,r2) = ClosestPair(Rx,Ry)
Construct Sy and scan to find (dS,sl,s2)

Return (dQ,ql,q2), (dR,rl,r2), (dS,sl1,S2) depending
on which among (dQ,dR,dS) 1s minimum

Analysis

* Computing (Px,Py) from P takes O(n log n)
* Recursive algorithm
* Setting up (Qx,Qy,Rx,Ry) from (Px,Py) is O(n)
* Setting up Sy from Qy,Ry is O(n)
* Scanning Sy is O(n)
* Recurrence is same as merge sort

* Overall T(n) = O(n log n)

