
DESIGN AND ANALYSIS  
OF ALGORITHMS
Divide and conquer: Counting inversions

MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE
http://www.cmi.ac.in/~madhavan

NPTEL MOOC,JAN-FEB 2015
Week 5, Module 6

http://www.cmi.ac.in/~madhavan

Divide and conquer
Break up a problem into disjoint subproblems

Combine these subproblem solutions efficiently

Examples

Merge sort

Sort left and right half, then merge

Quicksort

Rearrange into lower and upper partitions, 
then sort each partition separately

Recommendation systems

Online services recommend items to you

Compare your profile with other customers

Identify people who share your likes and dislikes

Recommend items that they like

Comparing profiles: how similar are your rankings
to those of others?

Comparing rankings
You and your friend rank 5 movies, A, B, C, D, E

Your ranking: D, B, C, A, E

Your friend’s ranking: B, A, C, D, E

How to measure how similar these rankings are?

For each pair of movies, compare preferences

You rank B above C, so does your friend

You rank D above B, your friend ranks B above D

Counting inversions

Inversion: pair of movies ranked in opposite ordern

No inversions: rankings are identical

n(n-1)/2 inversions: every pair is inverted

maximum dissimilarity of rankings

Counting inversions …

Equivalent formulation

Fix the order of one ranking as a sorted
sequence 1, 2, …, n

The other ranking is a permutation of 1, 2, …, n

An inversion is a pair (i,j), i < j where j appears
before i in the permutation

Counting inversions …

Your ranking: D, B, C, A, E

D = 1, B = 2, C = 3, A = 4, E = 5

Your friend’s ranking: B, A, C, D, E

Corresponding permutation — 2, 4, 3, 1, 5

Inversions are (1,2), (1,3), (1,4), (3,4)

Graphically …
Your ranking: 1, 2, 3, 4, 5

Your friend’s ranking: 2, 4, 3, 1, 5

1 42 53

2 14 53

Every crossing is an inversion

Brute force: check every (i,j) — O(n2)

Graphically …
Your ranking: 1, 2, 3, 4, 5

Your friend’s ranking: 2, 4, 3, 1, 5

1 42 53

2 14 53

Every crossing is an inversion

Brute force: check every (i,j) — O(n2)

Divide and conquer
Consider your friend’s permutation [i1,i2,…,iN]

Divide into two lists

L = [i1,i2,…,iN/2], R = [iN/2+1,iN/2+2,…,iN]

Recursively count inversions in L and R

Add inversions across L and R

How many elements in R are bigger than
elements in L?

Adapt merge sort

Divide [i1,i2,…,iN] into two lists

L = [i1,i2,…,iN/2], R = [iN/2+1,iN/2+2,…,iN]

Recursively sort and count inversions in L and R

Count inversions across L and R while merging

merge and count

Merge and count

L = [i1,i2,…,iN/2], R = [iN/2+1,iN/2+2,…,iN], sorted

Count inversions across L and R while merging

Any element from R added to output is inverted
with respect to all elements currently in L

Add current size of L to number of inversions

Merge and count
function MergeCount(A,m,B,n)  

// Merge A[0..m-1], B[0..n-1] into C[0..m+n-1]

i = 0; j = 0; k = 0; count = 0;  
// Current positions in A,B,C and inversion count 

 
while (k < m+n)  

// Case 1: Move head of A into C, no inversions  
if (j==n or A[i] <= B[j])  

C[k] = A[i]; i++; k++;  
 // Case 2: Move head of B into C, update count  

if (i==m or A[i] > B[j])  
C[k] = B[j]; j++; k++;  

 count = count + (m-i)

return(count,C)

Sort and count
function MergeSortCount(A,left,right)  

// Sort the segment A[left..right-1] into B

if (right - left == 1) // Base case, no inversions  
B[0] = A[left]; count = 0  

 return(0,B)

if (right - left > 1) // Recursive call

mid = (left+right)/2

(countL,L) = MergeSortCount(A,left,mid)  
(countR,R) = MergeSortCount(A,mid,right)

(countM,B) = MergeCount(L,mid-left,R,right-mid)

 return(countL+countR+countM,B)

Analysis
Similar to Merge Sort

T(1) = 1

T(n) = 2T(n/2) + n

Solve to get T(n) = O(n log n)

Total number of inversions can be n(n-1)/2 = O(n2)

We are counting them efficiently without
enumerating each one!

