DESIGN AND ANALYSIS
OF ALGORITHMS

Divide and conquer: Counting inversions

http://www.cmi.ac.in/~madhavan

Divide and conquer

* Break up a problem into disjoint subproblems
* Combine these subproblem solutions efficiently
* Examples
* Merge sort
* Sort left and right half, then merge
* Quicksort

* Rearrange into lower and upper partitions,
then sort each partition separately

Recommendation systems

* Online services recommend items to you

* Compare your profile with other customers
* |dentify people who share your likes and dislikes
* Recommend items that they like

* Comparing profiles: how similar are your rankings
to those of others?

Comparing rankings

* You and your friend rank 5 movies, A, B, C, D, E
* Your ranking: D, B, C, A E
* Your friend’s ranking: B, A, C, D, E
* How to measure how similar these rankings are?
* For each pair of movies, compare preferences
* You rank B above C, so does your friend

* You rank D above B, your friend ranks B above D

Counting inversions

* Inversion: pair of movies ranked in opposite ordern
* No Inversions: rankings are identical
* n(n-1)/2 inversions: every pair is inverted

* maximum dissimilarity of rankings

Counting inversions ...

* Equivalent formulation

* Fix the order of one ranking as a sorted
sequence 1,2, ..., n

* The other ranking is a permutation of 1, 2, ..., n

* An inversion is a pair (i,)), I < | where | appears
before | in the permutation

Counting inversions ...

* Your ranking: D, B, C, A, E
* D=1 B=2 -3 A4 F=—35
* Your friend’s ranking: B, A, C, D, E
* Corresponding permutation — 2,4, 3,1, 5

* |[nversions are (1,2), (1,3), (1,4), (3,4)

Graphically ...

* Your ranking: 1,2, 3,4,5

* Your friend’s ranking: 2, 4, 3, 1, 5

* Every crossing is an inversion

* Brute force: check every (i,j) — O(n?)

Graphically ...

* Your ranking: 1,2, 3,4,5

* Your friend’s ranking: 2, 4, 3, 1, 5

* Every crossing is an inversion

* Brute force: check every (i,j) — O(n?)

Divide and conquer

* Consider your friend’s permutation [is,lz,...,IN]
* Divide into two lists
* L = [i1,l2,...,In2], R = [in2+1,IN242,. . 4, IN]
* Recursively count inversions in L and R
* Add inversions across L and R

* How many elements in R are bigger than
elements in L?

Adapt merge sort

* Divide [i1,i2,...,iN] into two lists

Vi b

® | o= [0, inel, B = [iNgetsings2, .o IN]

* Recursively sort and count inversions in L and R
* Count inversions across L and R while merging

* merge and count

Merge and count

[4 4

* L =[i1,i2,...,In2], R

* Count inversions

= [iNn2+1,IN/242,...,IN], SOrted

across L and R while merging

* Any element from R added to output is inverted

with respect to

* Add current siz

all elements currently in L

e of L to number of inversions

Merge and count

function MergeCount(A,m,B,n)
// Merge A[0Q..m-1], B[0@..n-1] into C[@..m+n-1]

Tl e Dl O colpt = 0,

// Current positions in A,B,C and inversion count

while (k < m+n)
// Case 1: Move head of A into C, no inversions
ibeGi==nof Al1] <= B3l
Clk] = A[1]; 1++; k++;
// Case 2: Move head of B into C, update count
1f Ci==m ot A1} > Blj])
Clkl = B3] 94+ kit
count = count + (m-1)

return(count, C)

Sort and count

function MergeSortCount(A,left,right)
// Sort the segment A[left..right-1] into B

1f (right - left == 1) // Base case, no inversions
Big] = Afleftl: count = 0
return(0,B)

1f (right - left > 1) // Recursive call
mid = (left+right)/2

(countL,L) = MergeSortCount(A,left,mid)
(countR,R) = MergeSortCount(A,mid,right)

(countM,B) = MergeCount(L,mid-left,R,right-mid)

return(countL+countR+countM,B)

Analysis

* Similar to Merge Sort
* T(1) =1
* T(n) = 2T(n/2) + n
* Solve to get T(n) = O(n log n)
* Total number of inversions can be n(n-1)/2 = O(n?)

* \We are counting them efficiently without
enumerating each one!

