
DESIGN AND ANALYSIS  
OF ALGORITHMS
Heaps: Updating values, heap sort

MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE
http://www.cmi.ac.in/~madhavan

NPTEL MOOC,JAN-FEB 2015
Week 5, Module 5

http://www.cmi.ac.in/~madhavan

Heaps

Heaps are a tree implementation of priority queues

insert() and delete_max() are both O(log N)

heapify() builds a heap in O(N)

Tree can be manipulated easily using an array

Recall Dijskstra’s algorithm
Maintain two arrays

Visited[], initially False for all i

Distance[], initially ∞ for all i

For ∞, use sum of all edge weights + 1

Set Distance[1] = 0

Repeat, until all vertices are burnt

Find j with minimum Distance

Set Visited[j] = True

Recompute Distance[k] for each neighbour k of j

Bottlenecks
Find j with minimum Distance

Naive implementation takes O(n) time

Maintain Distance[] as min-heap, delete_min() is
O(log n)

Recompute Distance[k] for each neighbour k of j

Use adjacency lists to look up neighbours efficiently

To recompute Distance[k], need to update heap values

Not a basic operation on heaps, as defined

Updating values

7

5 56

Change 12 to 44

Increasing a
value can
create heap
violation with
parent

Fix violations
upwards, to
root 10 11

12

33

24

Updating values

7

5 56

Change 12 to 44

Increasing a
value can
create heap
violation with
parent

Fix violations
upwards, to
root 10 11

33

24

44

Updating values

7

5 56

Change 12 to 44

Increasing a
value can
create heap
violation with
parent

Fix violations
upwards, to
root 10 11

33

44

24

Updating values

7

5 56

Change 12 to 44

Increasing a
value can
create heap
violation with
parent

Fix violations
upwards, to
root 10 11

24

44

33

Updating values

7

5 56

Change 33 to 9

Decreasing a
value can
create heap
violation with
children

Fix violations
downwards, to
leaves 10 11

24

44

33

Updating values

7

5 56

Change 33 to 9

Decreasing a
value can
create heap
violation with
children

Fix violations
downwards, to
leaves 10 11

24

44

9

Updating values

7

5 56

Change 33 to 9

Decreasing a
value can
create heap
violation with
children

Fix violations
downwards, to
leaves 10 11

44

24

9

Updating values

7

5 56

Change 33 to 9

Decreasing a
value can
create heap
violation with
children

Fix violations
downwards, to
leaves 10

44

24

9

11

Updating
values

7

5 56

Update Distance[j]

Where is
Distance[j] in
heap?

Two additional
arrays,
NodeToHeap[], 
HeapToNode[]

10 11

24

44

33

1 2 3 4 5 6 7 8 9
7 3 5 2 4 1 6 0 8

0

1 2

3 4 5 6

87

8

6 4

2 5 3 7

1 9

0 1 2 3 4 5 6 7 8
8 6 4 2 5 3 7 1 9

NodeToHeap

HeapToNode

Updating
values

7

5 56

Update Distance[j]

Where is
Distance[j] in
heap?

Two additional
arrays,
NodeToHeap[], 
HeapToNode[]

10 11

24

44

9

1 2 3 4 5 6 7 8 9
7 3 5 2 4 1 6 0 8

0

1 2

3 4 5 6

87

8

6 4

2 5 3 7

1 9

0 1 2 3 4 5 6 7 8
8 6 4 2 5 3 7 1 9

NodeToHeap

HeapToNode

Updating
values

7

5 56

Update Distance[j]

Where is
Distance[j] in
heap?

Two additional
arrays,
NodeToHeap[], 
HeapToNode[]

10 11

44

24

9

0

1 2

3 4 5 6

87

8

4

5 3 7

1 9

NodeToHeap

HeapToNode

6

2

1 2 3 4 5 6 7 8 9
7 1 5 2 4 3 6 0 8

0 1 2 3 4 5 6 7 8
8 2 4 6 5 3 7 1 9

Updating
values

7

5 56

Update Distance[j]

Where is
Distance[j] in
heap?

Two additional
arrays,
NodeToHeap[], 
HeapToNode[]

10

44

24

9

11

0

1 2

3 4 5 6

87

8

4

5 3 7

1

NodeToHeap

HeapToNode

2

6

9

1 2 3 4 5 6 7 8 9
7 1 5 2 4 8 6 0 3

0 1 2 3 4 5 6 7 8
8 2 4 9 5 3 7 1 6

Dijkstra’s algorithm:
Complexity

Using heaps with updates

Finding minimum burn time vertex takes O(log n)

With adjacency list, updating burn times take
O(log n) each, total O(m) edges

Overall O(n log n + m log n) = O((n+m) log n)

Similar strategy works for Prim’s algorithm for
minimum cost spanning tree

Heap sort
Start with an unordered list

Build a heap — O(n)

Call delete_max() n times to extract elements in
descending order — O(n log n)

After each delete_max(), heap shrinks by 1

Store maximum value at the end of current heap

In place O(n log n) sort

