DESIGN AND ANALYSIS
OF ALGORITHMS

Heaps: Updating values, heap sort

http://www.cmi.ac.in/~madhavan

Heaps

* Heaps are a tree implementation of priority queues
* Insert() and delete_max() are both O(log N)
* heapify() builds a heap in O(N)

* [ree can be manipulated easily using an array

Recall Dijskstra’s algorithm

* Maintain two arrays

* Visited[], initially False for all |
* Distance[], initially « for all |

* For o, use sum of all edge weights + 1

* Set Distance[l] = 0

* Repeat, until all vertices are burnt
* Find j with minimum Distance
* Set Visited[j] = True

* Recompute Distance[k] for each neighbour k of j

Bottlenecks

* Find j with minimum Distance
* Naive implementation takes O(n) time

* Maintain Distance[] as min-heap, delete_min() is
O(log n)

* Recompute Distance[k] for each neighbour k of j
* Use adjacency lists to look up neighbours efficiently
* Jo recompute Distance[k], need to update heap values

* Not a basic operation on heaps, as defined

Updating values

* Change 12 to 44
* [Increasing a
value can

create heap @ ﬂ

violation with

parent

- (15 s 8 - (5
* Fix violations

upwards, to

root @

Updating values

* Change 12 to 44
* [Increasing a
value can

create heap @ ﬂ

violation with

parent

-) (5 (8 (5
* Fix violations

upwards, to

root @

Updating values

* Change 12 to 44
* [Increasing a
value can

create heap @ ﬂ

violation with

parent

- 20 ts) . (8 - (5
* Fix violations

upwards, to

root @

Updating values

* Change 12 to 44
* [Increasing a @
value can

create heap @ ﬂ

violation with

parent

- 20 ts) . (8 - (5
* Fix violations

upwards, to

root @

Updating values

* Change 33109
* Decreasing a @
value can

create heap @ Q

violation with

children

- 20 ts) . (8 - (5
* Fix violations

downwards, to

leaves @

Updating values

* Change 33109
* Decreasing a @
value can

create heap e Q

violation with

children

- 20 ts) . (8 - (5
* Fix violations

downwards, to

leaves @

Updating values

* Change 33109
* Decreasing a @
value can

create heap @ Q

violation with

children

- (6 ots 8 (5
* Fix violations

downwards, to

leaves @

Updating values

* Change 33109
* Decreasing a @
value can

create heap @ Q

violation with

children

- 0D ots. 8 - (5
* Fix violations

downwards, to

leaves @

NodeToHeap

Upda’tlﬂg 1[2]3la]s]e]|7]8]o9
Va‘ues oy ar 23401 060008
HeapToNode
0123|456 |7|8
* Update Distance[j}] glis s e a iwiide
* Where Is
Distance]j] in
heap?

* Two additional
arrays,
NodeToHeap| |,
HeapToNode] |

NodeToHeap

Upda’tlﬂg 1[2]3la]s]e]|7]8]o9
Va‘ues oy ar 23401 060008
HeapToNode
0123|456 |7|8
* Update Distance[j}] glis s e a iwiide
* Where Is
Distance]j] in
heap?

* Two additional
arrays,
NodeToHeap| |,
HeapToNode] |

NodeToHeap

Updating 112134156
79452 4 3
values

/
6

* Update Distancelj]

* \Where Is
Distancelj] in
heap?

* [wo additional
arrays,
NodeToHeap|],
HeapToNode[

NodeToHeap

Updating 12131415]6]7
Pl 521458 16
values

8 9
0 3

* Update Distancelj]

* \Where Is
Distancelj] in
heap?

* [wo additional
arrays,
NodeToHeap|],
HeapToNode[

Dijkstra’s algorithm:
Complexity

* Using heaps with updates
* Finding minimum burn time vertex takes O(log n)

* \With adjacency list, updating burn times take
O(log n) each, total O(m) edges

* Overall O(n log n + m log n) = O((n+m) log n)

* Similar strategy works for Prim’s algorithm for
minimum cost spanning tree

Heap sort

* Start with an unordered list
* Build a heap — O(n)

* Call delete_max() n times to extract elements in
descending order — O(n log n)

* After each delete_max(), heap shrinks by 1
* Store maximum value at the end of current heap

* |n place O(n log n) sort

