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Heaps

Heaps are a tree implementation of priority queues


insert( ) and delete_max( ) are both O(log N)


heapify( ) builds a heap in O(N)


Tree can be manipulated easily using an array



Recall Dijskstra’s algorithm
Maintain two arrays


Visited[ ], initially False for all i

Distance[ ], initially ∞ for all i


For ∞, use sum of all edge weights + 1


Set Distance[1] = 0


Repeat, until all vertices are burnt


Find j with minimum Distance


Set Visited[j] = True


Recompute Distance[k] for each neighbour k of j



Bottlenecks
Find j with minimum Distance


Naive implementation takes O(n) time


Maintain  Distance[] as min-heap, delete_min( ) is 
O(log n)

Recompute Distance[k] for each neighbour k of j 

Use adjacency lists to look up neighbours efficiently


To recompute Distance[k], need to update heap values


Not a basic operation on heaps, as defined
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Dijkstra’s algorithm: 
Complexity

Using heaps with updates


Finding minimum burn time vertex takes O(log n)


With adjacency list, updating burn times take 
O(log n) each, total O(m) edges


Overall O(n log n + m log n) = O((n+m) log n)


Similar strategy works for Prim’s algorithm for 
minimum cost spanning tree



Heap sort
Start with an unordered list


Build a heap — O(n)


Call delete_max( ) n times to extract elements in 
descending order — O(n log n)


After each delete_max( ), heap shrinks by 1


Store maximum value at the end of current heap


In place O(n log n) sort


