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Priority queue
Need to maintain a list of jobs with priorities to 
optimise the following operations


delete_max( )


Identify and remove job with highest priority


Need not be unique


insert( )


Add a new job to the list



Trees

Maintain a special kind of binary tree called a heap


Balanced: N node tree has height log N


Both insert( ) and delete_max( ) take O(log N)


Processing N jobs takes time O(N log N)


Truly flexible, need not fix upper bound for N in 
advance



Heaps
Binary tree filled level 
by level, left to right


At each node, value 
stored is bigger than 
both children


(Max) Heap 
PropertyBinary tree 
filled level by level, 
left to right
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Complexity of insert( )
Need to walk up from the leaf to the root


Height of the tree


Number of nodes at level 0,1,…,i is 20,21, …,2i


K levels filled : 20+21+ …+2k-1 = 2k - 1 nodes


N nodes : number of levels at most log N + 1


insert( ) takes time O(log N)



delete_max( )
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Impementing using arrays
Number the nodes left 
to right, level by level


Represent as an array 
H[0..N-1]


Children of H[i] are at 
H[2i+1], H[2i+2]


Parent of H[j] is at 
H[floor((j-1)/2)] for j > 0
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Building a heap, heapify( )

Given a list of values [x1,x2,…,xN], build a heap


Naive strategy


Start with an empty heap


Insert each xj


Overall O(N log N)



Better heapify( )
Set up the array as [x1,x2,…,xN]


Leaf nodes trivially satisfy heap property


Second half of array is already a valid heap


Assume leaf nodes are at level k


For each node at level k-1, k-2, … , 0, fix heap property


As we go up, the number of steps per node goes up by 
1, but the number of nodes per level is halved


Cost turns out to be O(N) overall



Better heapify( )
0

1 2

3 4 5 6

7 8 9 10 11 12 13 14

N/2 nodes 
already satisfy 
heap property



Better heapify( )
0

1 2

3 4 5 6

7 8 9 10 11 12 13 14

N/2 nodes 
already satisfy 
heap property

4 nodes,  
height 1 repair



Better heapify( )
0

1 2

3 4 5 6

7 8 9 10 11 12 13 14

N/2 nodes 
already satisfy 
heap property

4 nodes,  
height 1 repair

2 nodes, 
 height 2 repair



Better heapify( )
0

1 2

3 4 5 6

7 8 9 10 11 12 13 14

N/2 nodes 
already satisfy 
heap property

4 nodes,  
height 1 repair

2 nodes, 
 height 2 repair

1 node,  
 height 3 repair



Summary
Heaps are a tree implementation of priority queues


insert( ) and delete_max( ) are both O(log N)


heapify( ) builds a heap in O(N)


Tree can be manipulated easily using an array


Can invert the heap condition


Each node is smaller than its children


Min-heap, for insert( ), delete_min( )


