NPTEL MOOC, JAN-FEB 2015 Week 5, Module 4

DESIGN AND ANALYSIS OF ALGORITHMS

Heaps

MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE http://www.cmi.ac.in/~madhavan

Priority queue

 Need to maintain a list of jobs with priorities to optimise the following operations

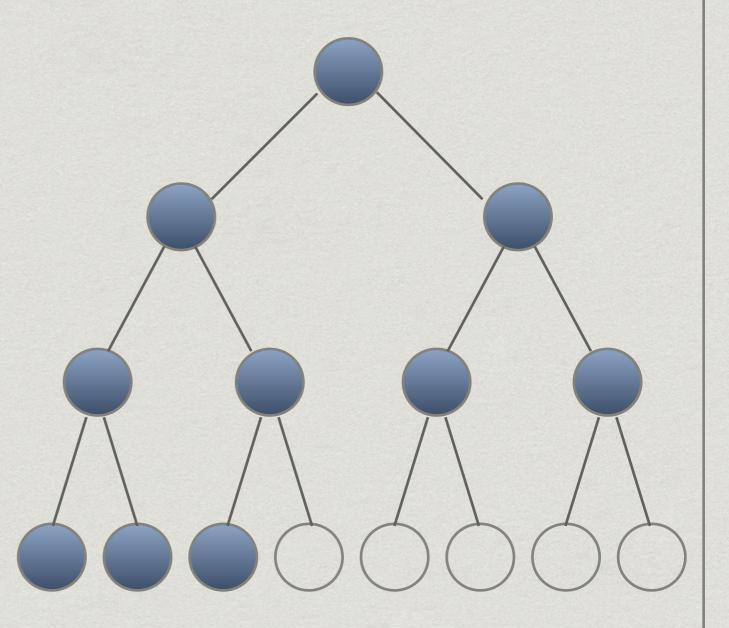
- * Identify and remove job with highest priority
- * Need not be unique
- * insert()
 - * Add a new job to the list

Trees

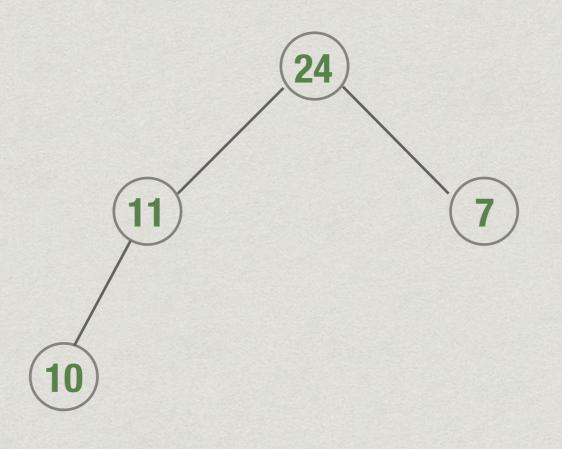
- * Maintain a special kind of binary tree called a heap
 - * Balanced: N node tree has height log N
- * Both insert() and delete_max() take O(log N)
 - * Processing N jobs takes time O(N log N)
- Truly flexible, need not fix upper bound for N in advance

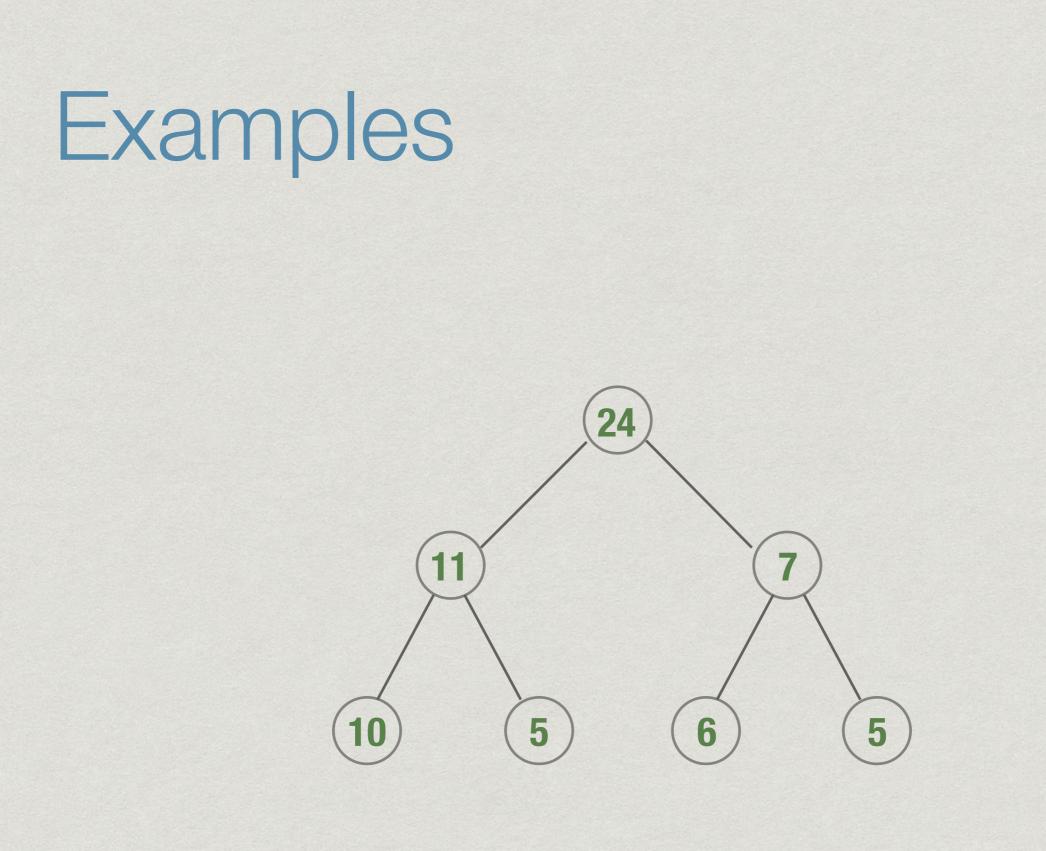
Heaps

- Binary tree filled level by level, left to right
- At each node, value stored is bigger than both children
 - * (Max) Heap
 PropertyBinary tree
 filled level by level,
 left to right

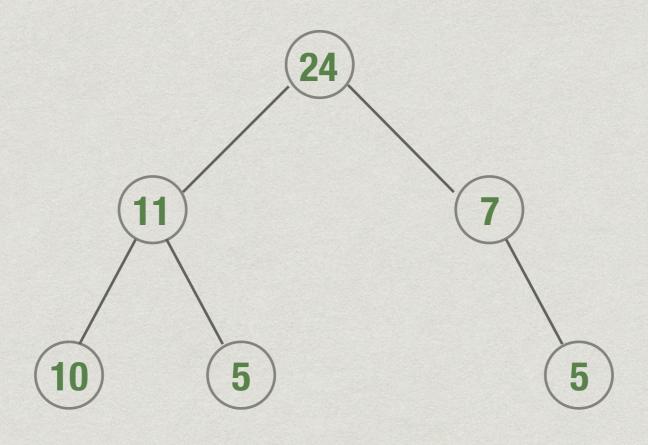


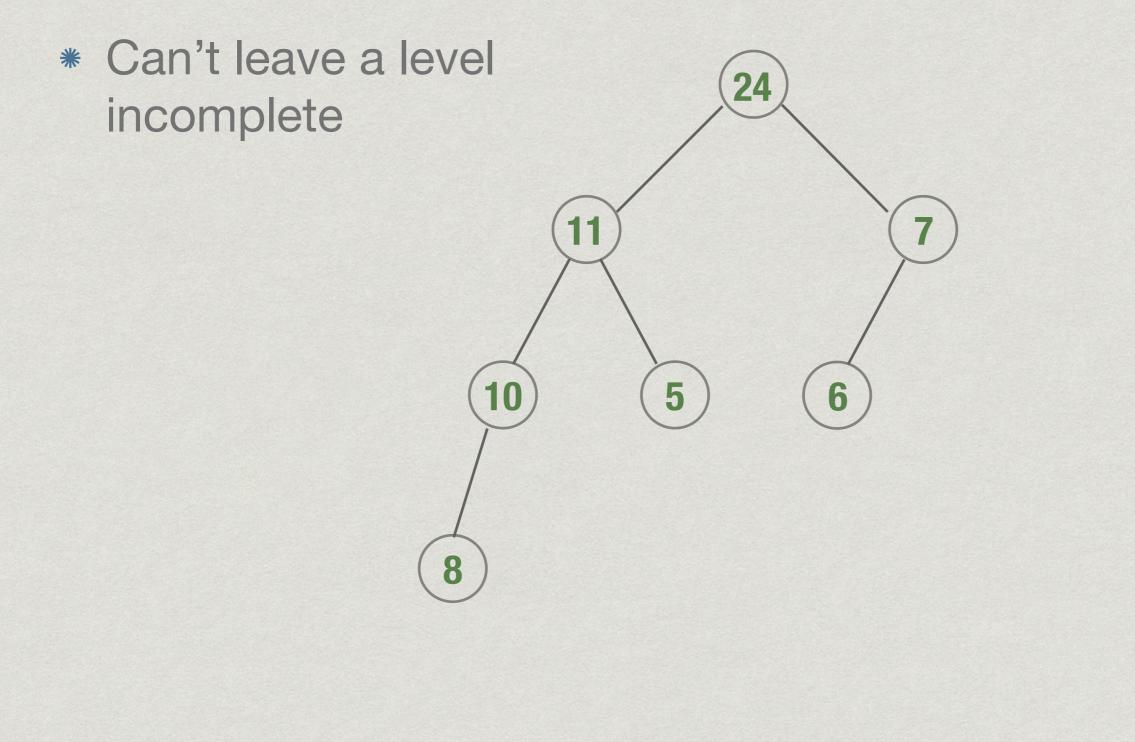
Examples



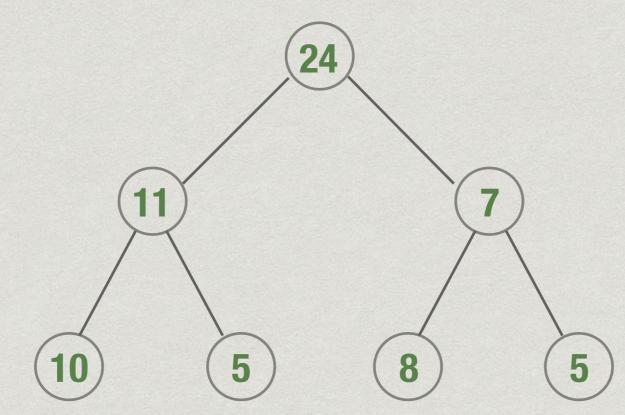


* No "holes" allowed

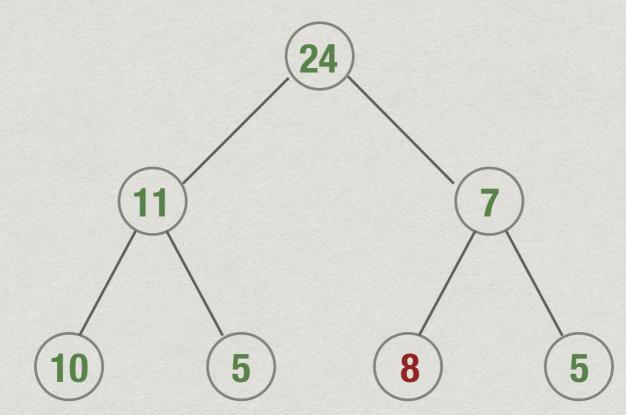




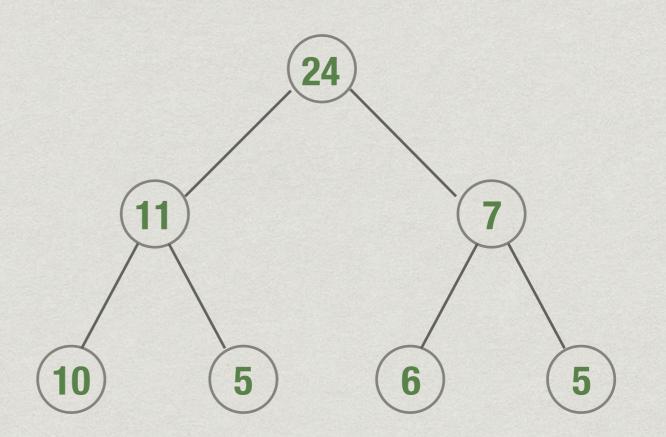
 Violates heap property



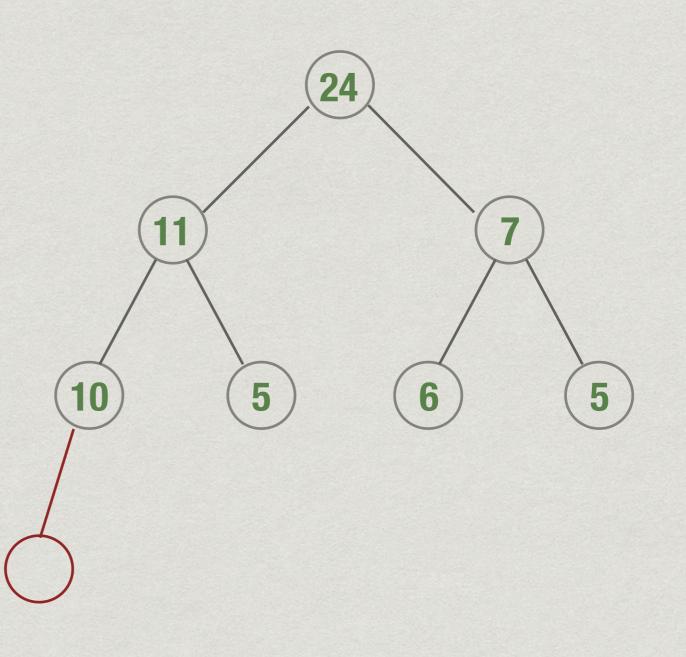
 Violates heap property



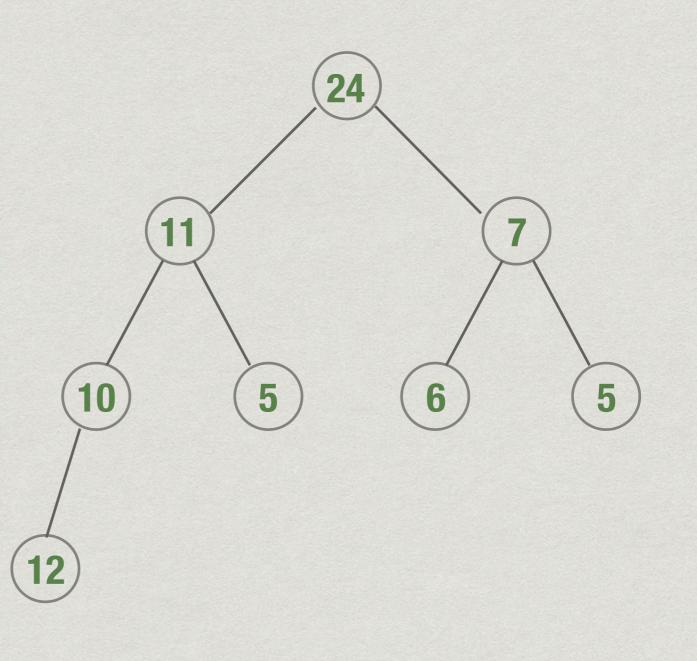
- * insert 12
- Position of new node is fixed by structure
- Restore heap
 property along the
 path to the root



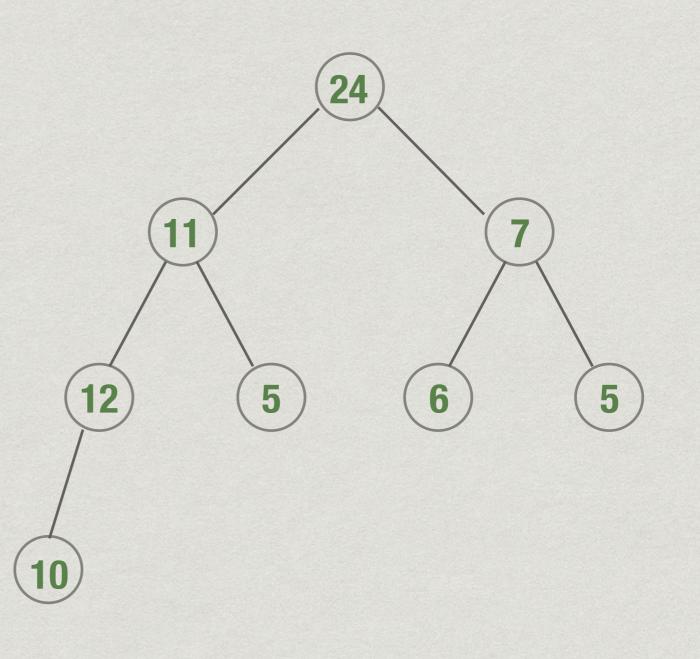
- * insert 12
- Position of new node is fixed by structure
- Restore heap
 property along the
 path to the root



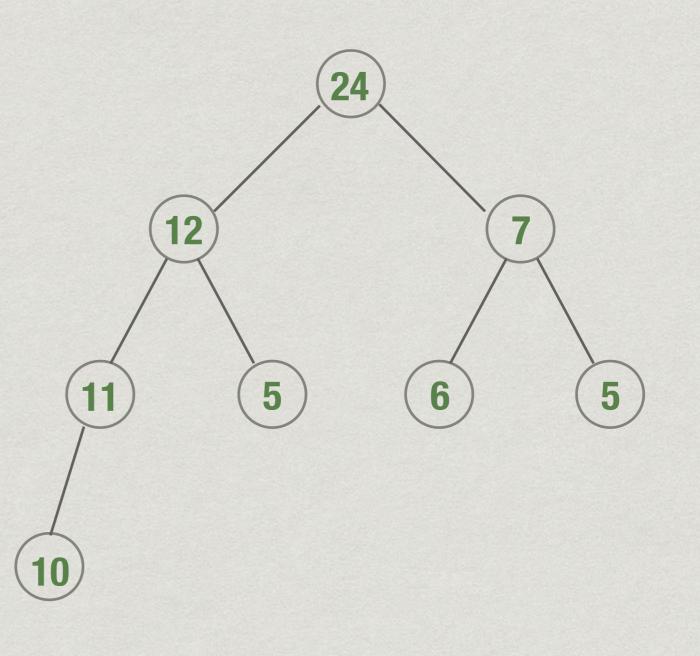
- * insert 12
- Position of new node is fixed by structure
- Restore heap
 property along the
 path to the root

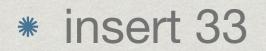


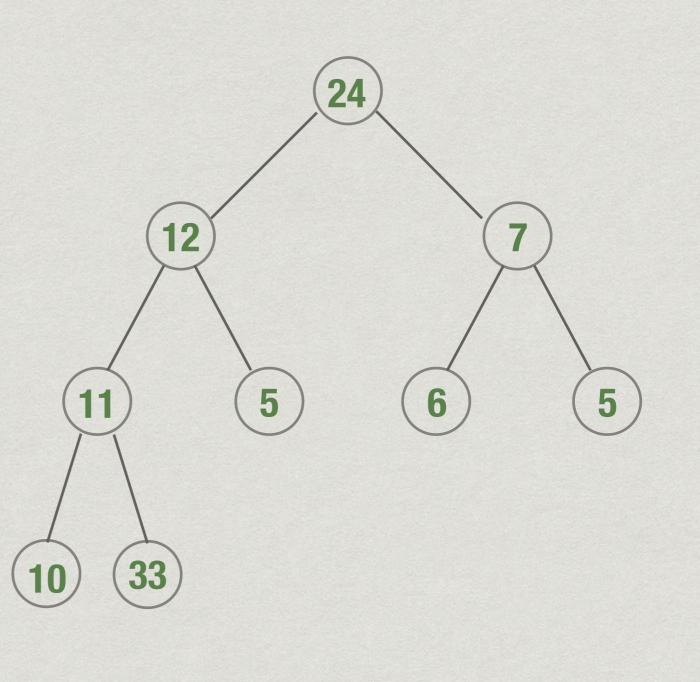
- * insert 12
- Position of new node is fixed by structure
- Restore heap
 property along the
 path to the root

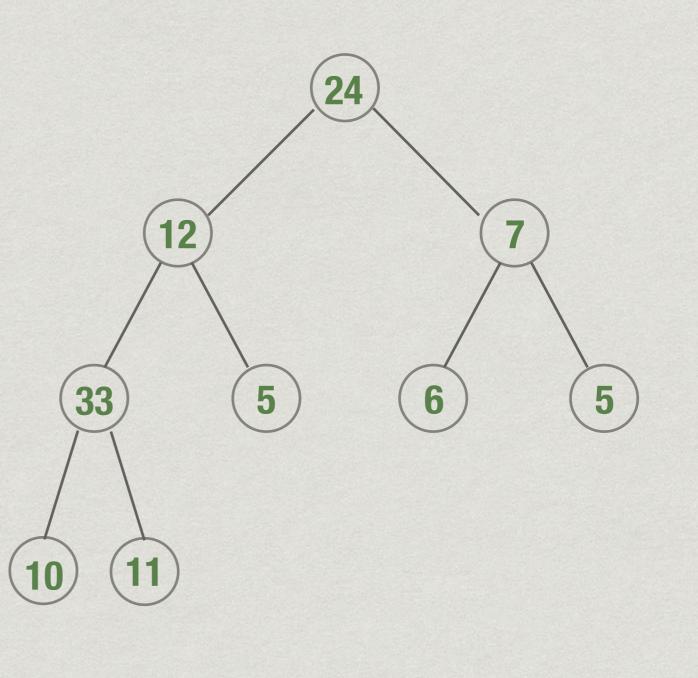


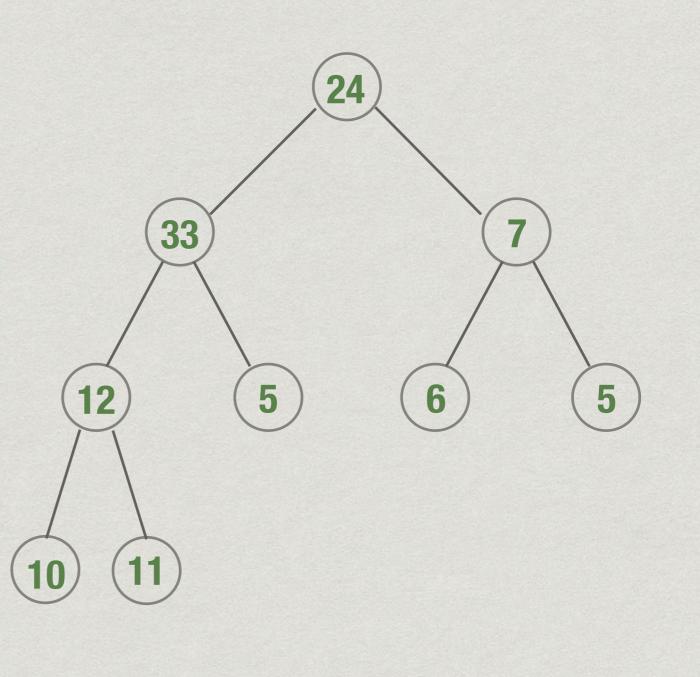
- * insert 12
- Position of new node is fixed by structure
- Restore heap
 property along the
 path to the root

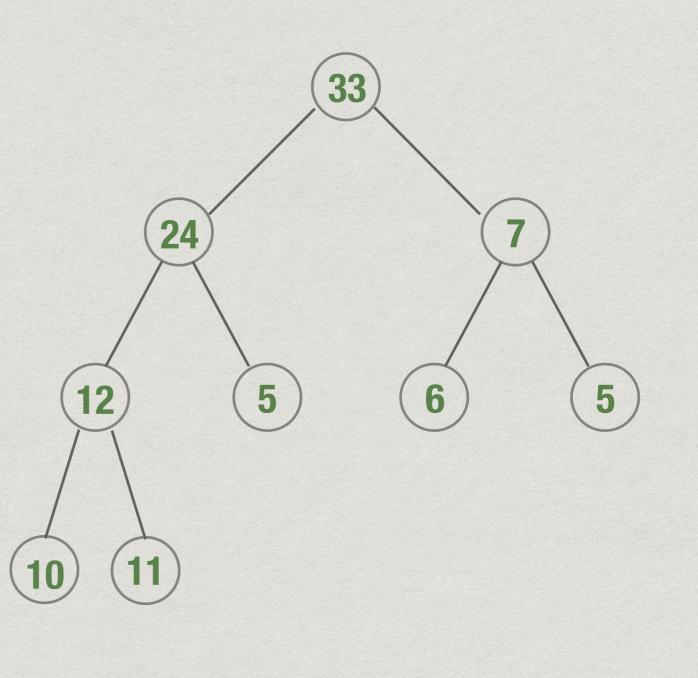








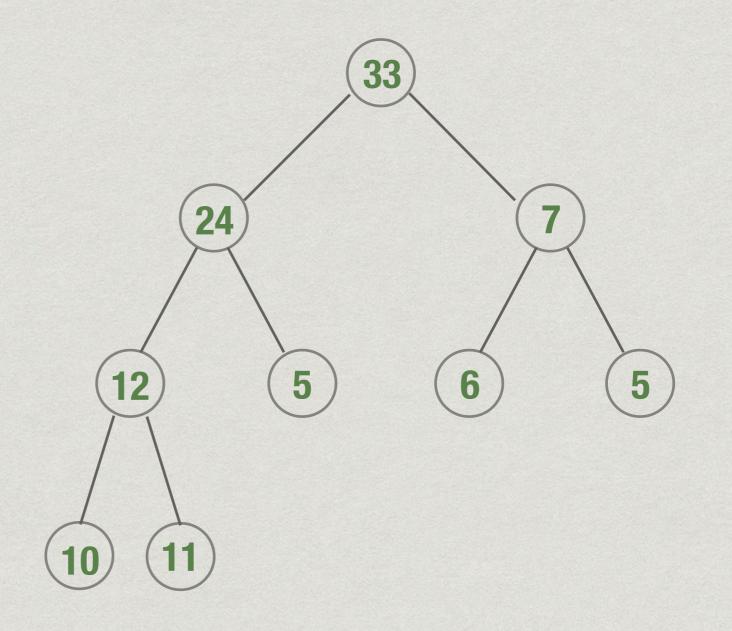




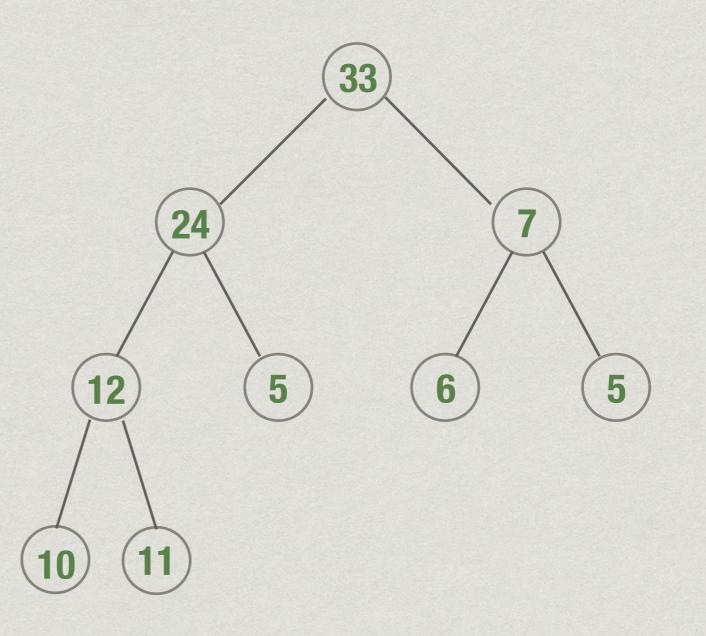
Complexity of insert()

- * Need to walk up from the leaf to the root
 - * Height of the tree
- * Number of nodes at level 0,1,...,i is 2⁰,2¹, ...,2ⁱ
- * K levels filled : $2^{0}+2^{1}+...+2^{k-1} = 2^{k} 1$ nodes
- * N nodes : number of levels at most log N + 1
- * insert() takes time O(log N)

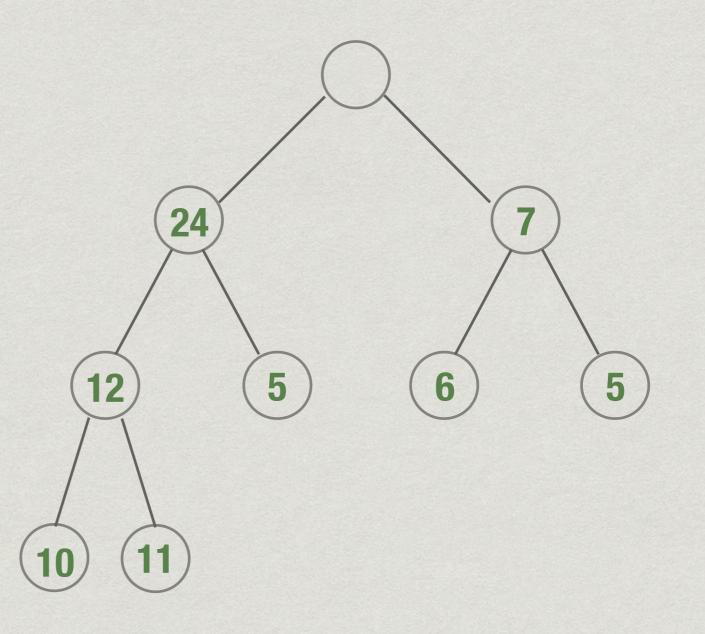
- Maximum value is always at the root
 - From heap property, by induction
- * How do we remove this value efficiently?



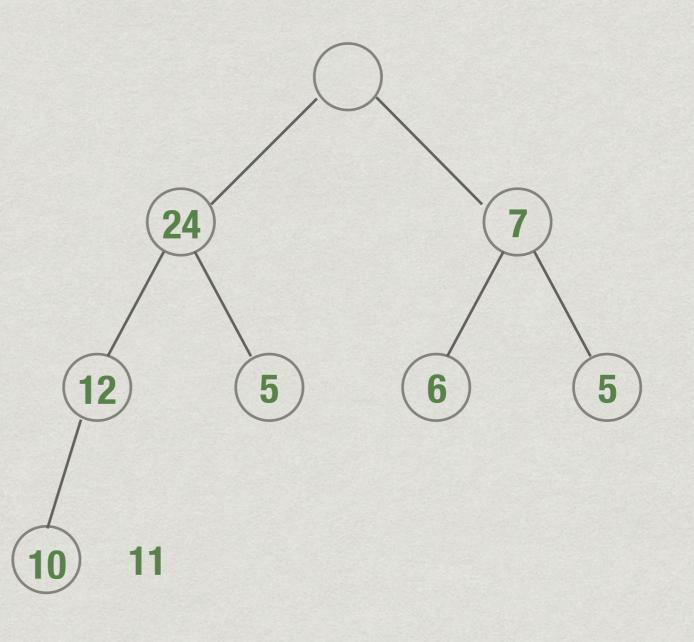
- Removing maximum value creates a "hole" at the root
- Reducing one value requires deleting last node
- Move "homeless" value to root



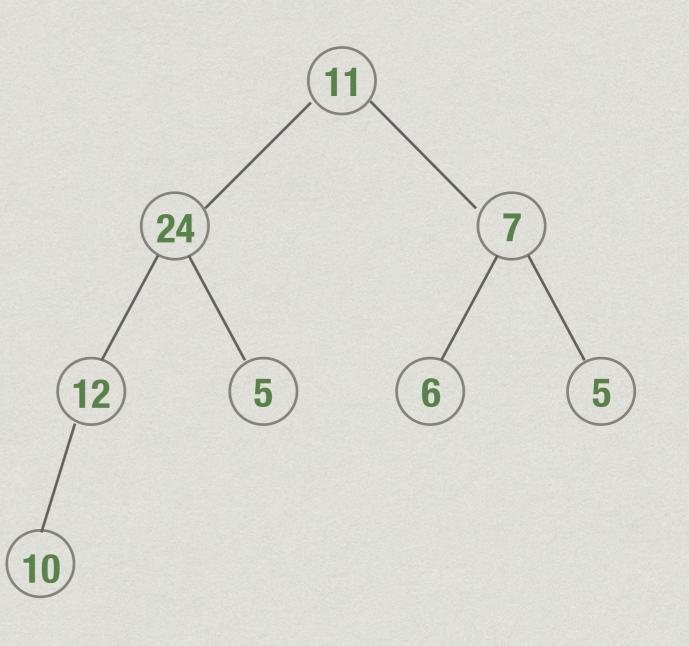
- Removing maximum value creates a "hole" at the root
- Reducing one value requires deleting last node
- Move "homeless" value to root



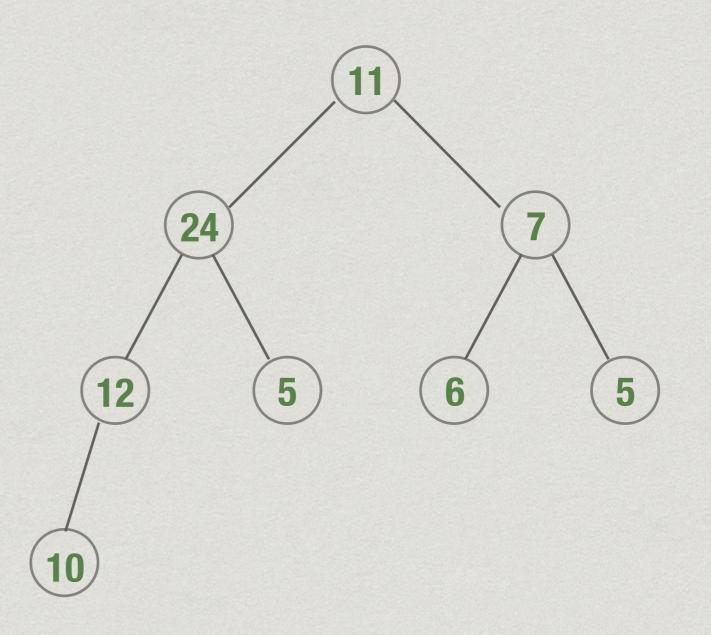
- Removing maximum value creates a "hole" at the root
- Reducing one value requires deleting last node
- Move "homeless" value to root



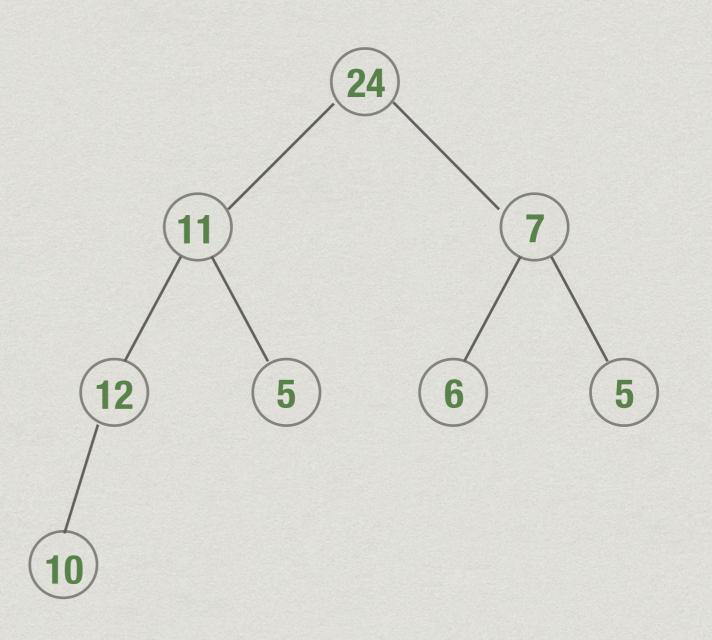
- Removing maximum value creates a "hole" at the root
- Reducing one value requires deleting last node
- Move "homeless" value to root



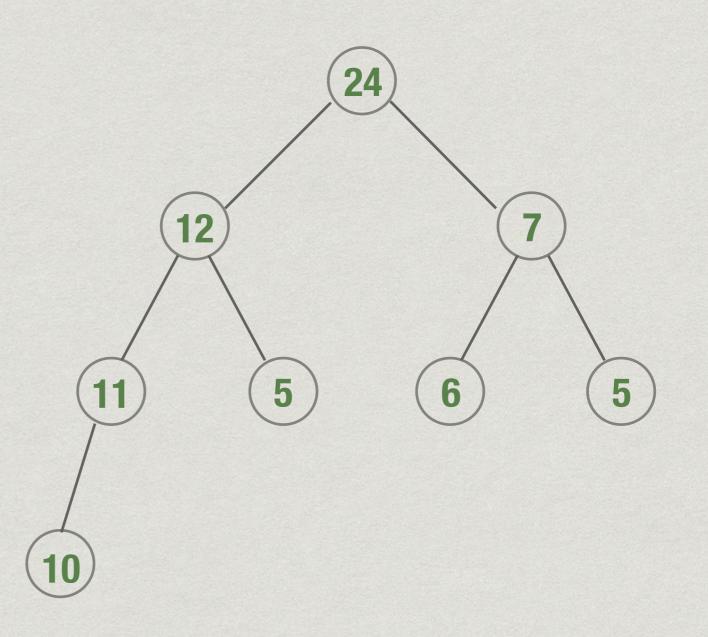
- Now restore the heap property from root downwards
 - Swap with largest child
- Will follow a single path from root to leaf



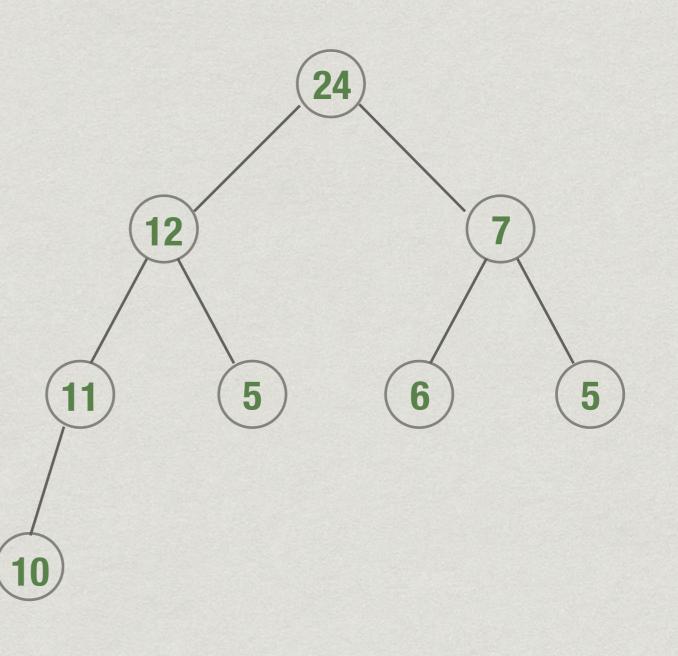
- Now restore the heap property from root downwards
 - Swap with largest child
- Will follow a single path from root to leaf



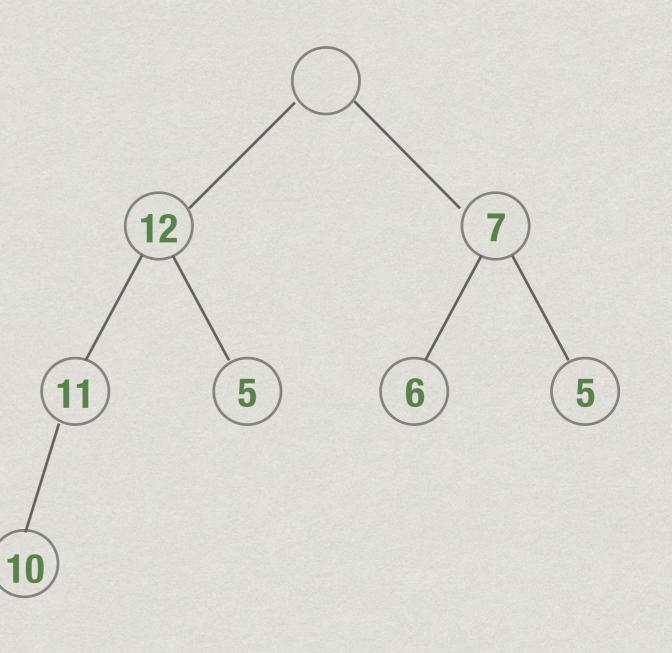
- Now restore the heap property from root downwards
 - Swap with largest child
- Will follow a single path from root to leaf



- Will follow a single path from root to leaf
- Cost proportional to height of tree
- * O(log N)

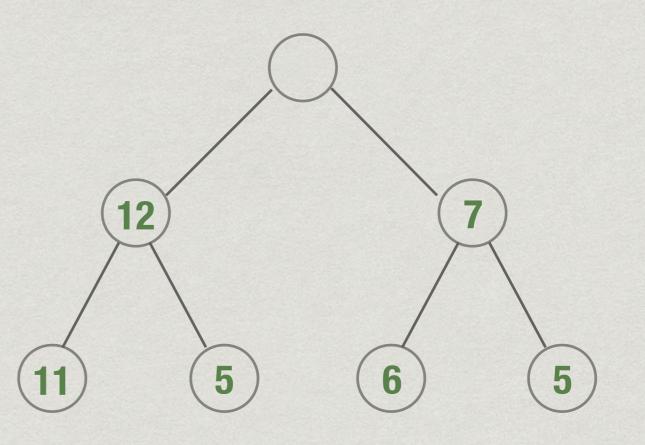


- Will follow a single path from root to leaf
- Cost proportional to height of tree
- * O(log N)



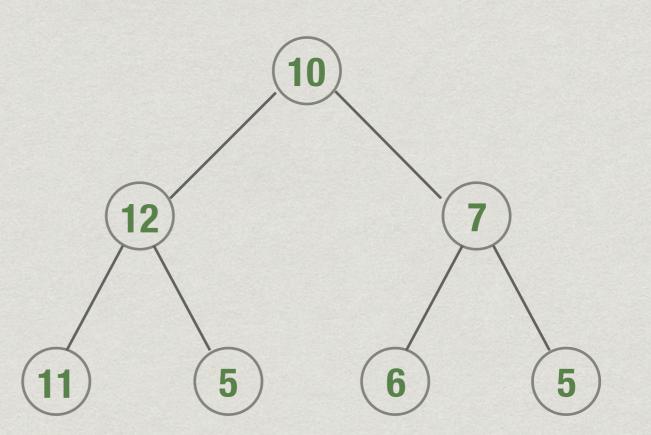
- Will follow a single path from root to leaf
- Cost proportional to height of tree

* O(log N)

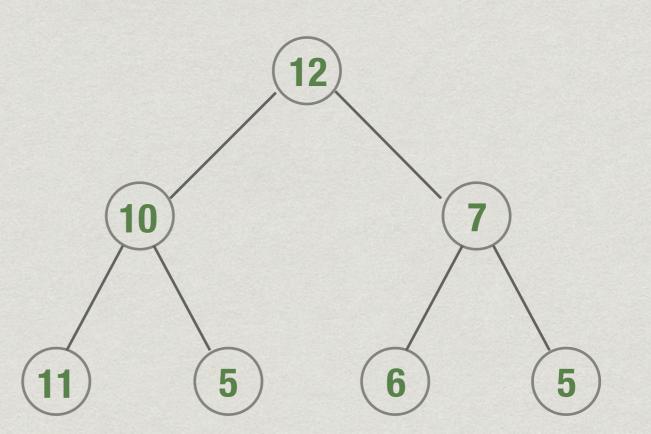


- Will follow a single path from root to leaf
- Cost proportional to height of tree

* O(log N)

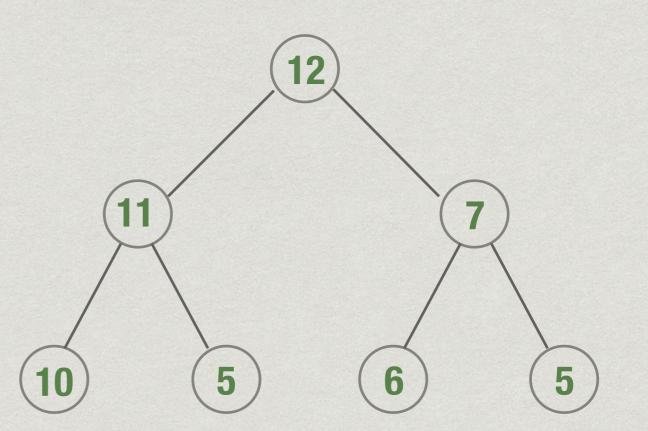


- Will follow a single path from root to leaf
- Cost proportional to height of tree
- * O(log N)



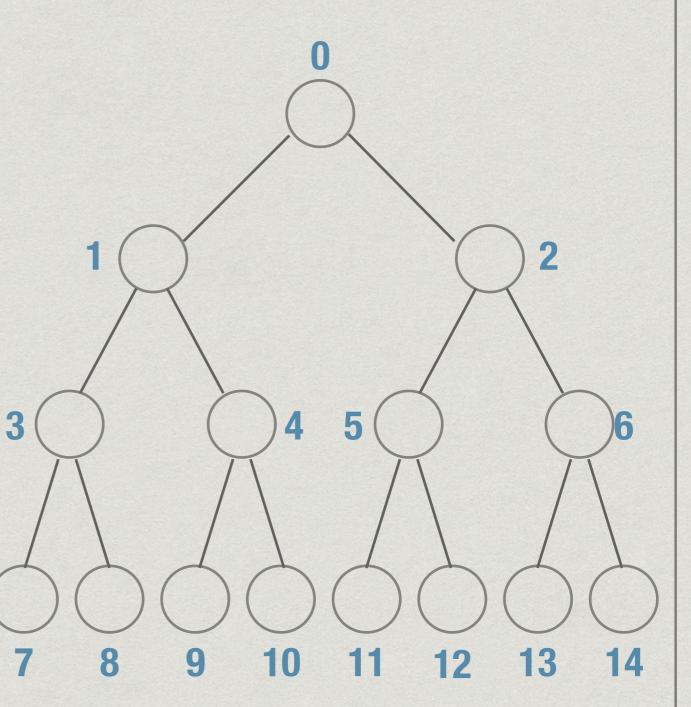
- Will follow a single path from root to leaf
- Cost proportional to height of tree

* O(log N)



Impementing using arrays

- Number the nodes left to right, level by level
- Represent as an array H[0..N-1]
- Children of H[i] are at H[2i+1], H[2i+2]
- Parent of H[j] is at H[floor((j-1)/2)] for j > 0

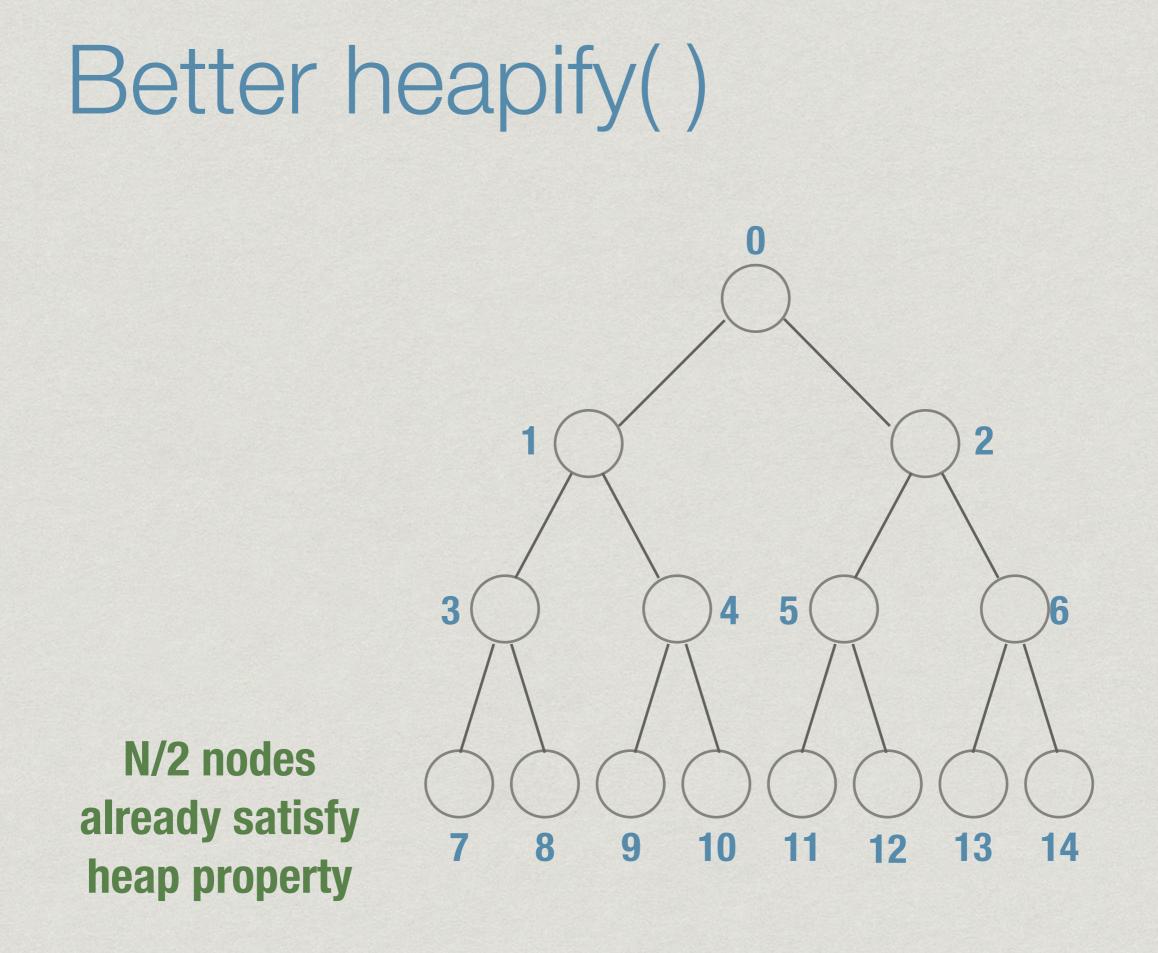


Building a heap, heapify()

- * Given a list of values [x1,x2,...,xN], build a heap
- * Naive strategy
 - * Start with an empty heap
 - * Insert each x_j
 - * Overall O(N log N)

Better heapify()

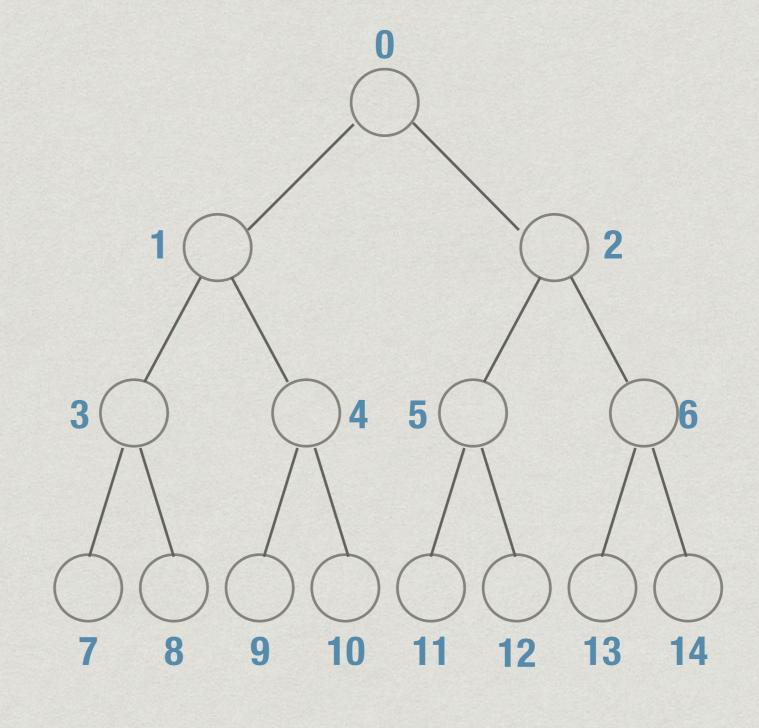
- * Set up the array as [x₁,x₂,...,x_N]
 - * Leaf nodes trivially satisfy heap property
 - * Second half of array is already a valid heap
- * Assume leaf nodes are at level k
 - * For each node at level k-1, k-2, ..., 0, fix heap property
 - * As we go up, the number of steps per node goes up by
 1, but the number of nodes per level is halved
 - * Cost turns out to be O(N) overall

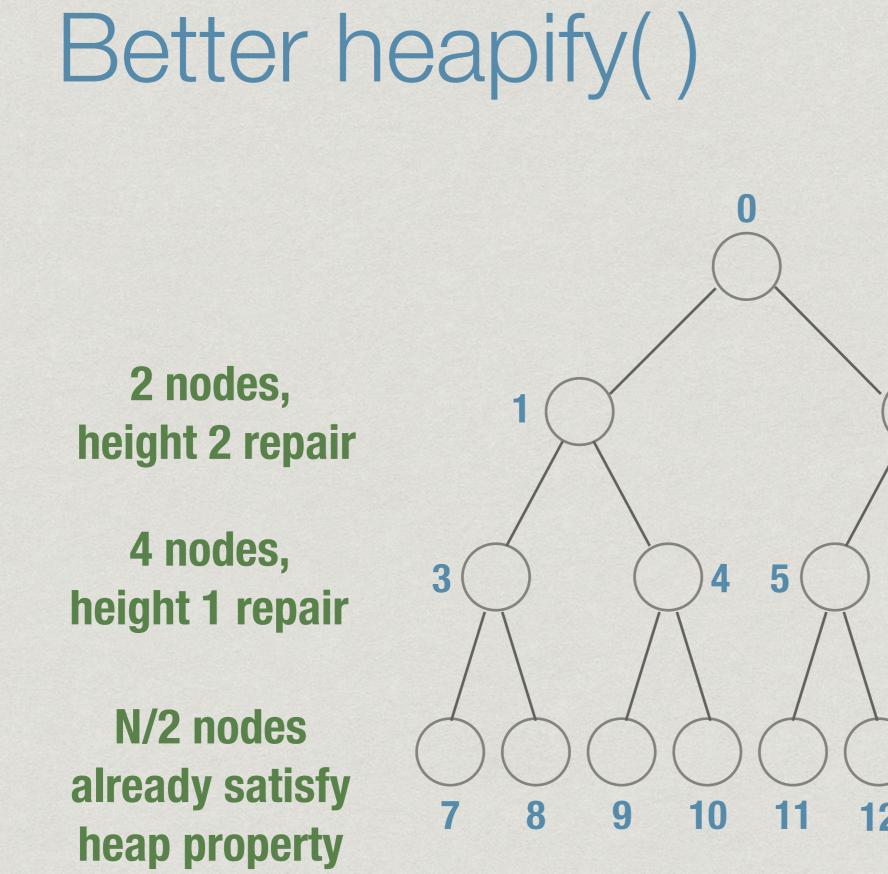


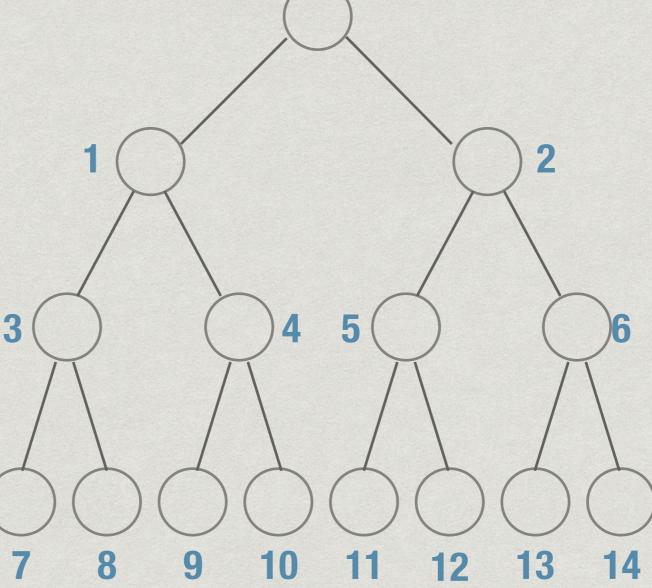
Better heapify()

4 nodes, height 1 repair

N/2 nodes already satisfy heap property

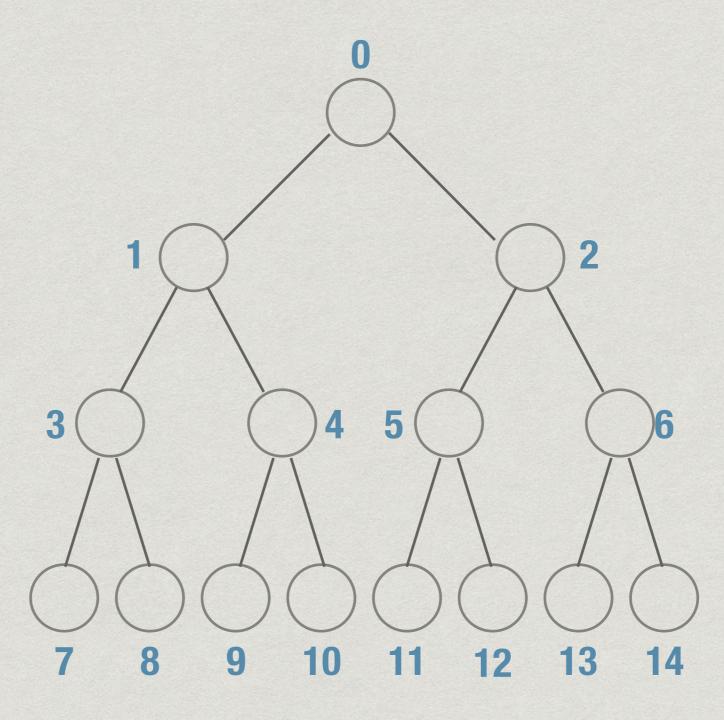






Better heapify()

1 node, height 3 repair 2 nodes, height 2 repair 4 nodes, height 1 repair N/2 nodes already satisfy heap property



Summary

- * Heaps are a tree implementation of priority queues
 - * insert() and delete_max() are both O(log N)
 - * heapify() builds a heap in O(N)
 - * Tree can be manipulated easily using an array
- * Can invert the heap condition
 - * Each node is smaller than its children
 - * Min-heap, for insert(), delete_min()