
DESIGN AND ANALYSIS  
OF ALGORITHMS
Heaps

MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE
http://www.cmi.ac.in/~madhavan

NPTEL MOOC,JAN-FEB 2015
Week 5, Module 4

http://www.cmi.ac.in/~madhavan

Priority queue
Need to maintain a list of jobs with priorities to
optimise the following operations

delete_max()

Identify and remove job with highest priority

Need not be unique

insert()

Add a new job to the list

Trees

Maintain a special kind of binary tree called a heap

Balanced: N node tree has height log N

Both insert() and delete_max() take O(log N)

Processing N jobs takes time O(N log N)

Truly flexible, need not fix upper bound for N in
advance

Heaps
Binary tree filled level
by level, left to right

At each node, value
stored is bigger than
both children

(Max) Heap
PropertyBinary tree
filled level by level,
left to right

Examples

24

11 7

10

Examples

24

11 7

10 5 56

Non-examples

24

11 7

10 5 5

No “holes” allowed

Non-examples
24

11 7

10 5

Can’t leave a level
incomplete

6

8

Non-examples

24

11 7

10 5 58

Violates heap
property

Non-examples

24

11 7

10 5 5

Violates heap
property

8

insert()

24

11 7

10 5 56

insert 12

Position of new
node is fixed by
structure

Restore heap
property along the
path to the root

insert()

24

11 7

10 5 56

insert 12

Position of new
node is fixed by
structure

Restore heap
property along the
path to the root

insert()

24

11 7

10 5 56

insert 12

Position of new
node is fixed by
structure

Restore heap
property along the
path to the root

12

insert()

24

11 7

5 56

insert 12

Position of new
node is fixed by
structure

Restore heap
property along the
path to the root

12

10

insert()

24

7

5 56

insert 12

Position of new
node is fixed by
structure

Restore heap
property along the
path to the root

10

12

11

insert()

24

7

5 56

insert 33

10

12

11

33

insert()

24

7

5 56

insert 33

10

12

33

11

insert()

24

7

5 56

insert 33

10 11

12

33

insert()

7

5 56

insert 33

10 11

12

33

24

Complexity of insert()
Need to walk up from the leaf to the root

Height of the tree

Number of nodes at level 0,1,…,i is 20,21, …,2i

K levels filled : 20+21+ …+2k-1 = 2k - 1 nodes

N nodes : number of levels at most log N + 1

insert() takes time O(log N)

delete_max()

7

5 56

Maximum value is
always at the root

From heap
property, by
induction

How do we
remove this value
efficiently?

10 11

12

33

24

delete_max()

7

5 56

Removing
maximum value
creates a “hole”
at the root

Reducing one
value requires
deleting last node

Move “homeless”
value to root 10 11

12

33

24

delete_max()

7

5 56

Removing
maximum value
creates a “hole”
at the root

Reducing one
value requires
deleting last node

Move “homeless”
value to root 10 11

12

24

delete_max()

7

5 56

Removing
maximum value
creates a “hole”
at the root

Reducing one
value requires
deleting last node

Move “homeless”
value to root 10 11

12

24

delete_max()

7

5 56

Removing
maximum value
creates a “hole”
at the root

Reducing one
value requires
deleting last node

Move “homeless”
value to root 10

12

24

11

delete_max()

7

5 56

Now restore the
heap property
from root
downwards

Swap with
largest child

Will follow a
single path from
root to leaf 10

12

24

11

delete_max()

7

5 56

Now restore the
heap property
from root
downwards

Swap with
largest child

Will follow a
single path from
root to leaf 10

12

11

24

delete_max()

7

5 56

Now restore the
heap property
from root
downwards

Swap with
largest child

Will follow a
single path from
root to leaf 10

24

11

12

delete_max()

7

5 56

Will follow a
single path from
root to leaf

Cost proportional
to height of tree

O(log N)

10

24

11

12

delete_max()

7

5 56

Will follow a
single path from
root to leaf

Cost proportional
to height of tree

O(log N)

10

11

12

delete_max()

7

5 56

Will follow a
single path from
root to leaf

Cost proportional
to height of tree

O(log N)

10

11

12

delete_max()

7

5 56

Will follow a
single path from
root to leaf

Cost proportional
to height of tree

O(log N)
11

12

10

delete_max()

7

5 56

Will follow a
single path from
root to leaf

Cost proportional
to height of tree

O(log N)
11

10

12

delete_max()

7

5 56

Will follow a
single path from
root to leaf

Cost proportional
to height of tree

O(log N)

12

10

11

Impementing using arrays
Number the nodes left
to right, level by level

Represent as an array
H[0..N-1]

Children of H[i] are at
H[2i+1], H[2i+2]

Parent of H[j] is at
H[floor((j-1)/2)] for j > 0

0

1 2

3 4 5 6

7 8 9 10 11 12 13 14

Building a heap, heapify()

Given a list of values [x1,x2,…,xN], build a heap

Naive strategy

Start with an empty heap

Insert each xj

Overall O(N log N)

Better heapify()
Set up the array as [x1,x2,…,xN]

Leaf nodes trivially satisfy heap property

Second half of array is already a valid heap

Assume leaf nodes are at level k

For each node at level k-1, k-2, … , 0, fix heap property

As we go up, the number of steps per node goes up by
1, but the number of nodes per level is halved

Cost turns out to be O(N) overall

Better heapify()
0

1 2

3 4 5 6

7 8 9 10 11 12 13 14

N/2 nodes
already satisfy
heap property

Better heapify()
0

1 2

3 4 5 6

7 8 9 10 11 12 13 14

N/2 nodes
already satisfy
heap property

4 nodes,  
height 1 repair

Better heapify()
0

1 2

3 4 5 6

7 8 9 10 11 12 13 14

N/2 nodes
already satisfy
heap property

4 nodes,  
height 1 repair

2 nodes, 
 height 2 repair

Better heapify()
0

1 2

3 4 5 6

7 8 9 10 11 12 13 14

N/2 nodes
already satisfy
heap property

4 nodes,  
height 1 repair

2 nodes, 
 height 2 repair

1 node,  
 height 3 repair

Summary
Heaps are a tree implementation of priority queues

insert() and delete_max() are both O(log N)

heapify() builds a heap in O(N)

Tree can be manipulated easily using an array

Can invert the heap condition

Each node is smaller than its children

Min-heap, for insert(), delete_min()

