
DESIGN AND ANALYSIS  
OF ALGORITHMS
Priority queues

MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE
http://www.cmi.ac.in/~madhavan

NPTEL MOOC,JAN-FEB 2015
Week 5, Module 3

http://www.cmi.ac.in/~madhavan

Job scheduler
A job scheduler maintains a list of pending jobs
with their priorities.

When the processor is free, the scheduler picks
out the job with maximum priority in the list and
schedules it.

New jobs may join the list at any time.

How should the scheduler maintain the list of
pending jobs and their priorities?

Priority queue
Need to maintain a list of jobs with priorities to
optimise the following operations

delete_max()

Identify and remove job with highest priority

Need not be unique

insert()

Add a new job to the list

Linear structures
Unsorted list

insert() takes O(1) time

delete_max() takes O(n) time

Sorted list

delete_max() takes O(1) time

insert() takes O(n) time

Processing a sequence of n jobs requires O(n2) time

Two dimensional structures

First attempt

Assume N processes enter/
leave the scheduler

Keep an √N x √N array

Each row is maintained in
sorted order

12 17 29 31 40

8 19 22 33 37

10 13 14

13 20 25 43

6 11

N = 25

insert()

Insert 11

Insert into first row
that has free space

Maintain size of
each row

Takes time O(√N)

12 17 29 31 40

8 19 22 33 37

10 13 14

13 20 25 43

6 11

5

5

3

4

2

insert()

Insert 11

Insert into first row
that has free space

Maintain size of
each row

Takes time O(√N)

12 17 29 31 40

8 19 22 33 37

10 13 14

13 20 25 43

6 11

5

5

3

4

2

11

insert()

Insert 11

Insert into first row
that has free space

Maintain size of
each row

Takes time O(√N)

12 17 29 31 40

8 19 22 33 37

10 13 14

13 20 25 43

6 11

5

5

3

4

2

11

insert()

Insert 11

Insert into first row
that has free space

Maintain size of
each row

Takes time O(√N)

12 17 29 31 40

8 19 22 33 37

10 13 14

13 20 25 43

6 11

5

5

3

4

2

11

insert()

Insert 11

Insert into first row
that has free space

Maintain size of
each row

Takes time O(√N)

5

5

3

4

2

12 17 29 31 40

8 19 22 33 37

10 11 13 14

13 20 25 43

6 11

insert()

Insert 11

Insert into first row
that has free space

Maintain size of
each row

Takes time O(√N)

12 17 29 31 40

8 19 22 33 37

10 11 13 14

13 20 25 43

6 11

5

5

4

4

2

delete_max()

Maximum in each
row is the last
element

Maximum among
these is to be
deleted

Again O(√N)

12 17 29 31 40

8 19 22 33 37

10 11 13 14

13 20 25 43

6 11

5

5

4

4

2

delete_max()

Maximum in each
row is the last
element

Maximum among
these is to be
deleted

Again O(√N)

5

5

4

4

2

12 17 29 31 40

8 19 22 33 37

10 11 13 14

13 20 25 43

6 11

delete_max()

Maximum in each
row is the last
element

Maximum among
these is to be
deleted

Again O(√N)

5

5

4

4

2

12 17 29 31 40

8 19 22 33 37

10 11 13 14

13 20 25 43

6 11

delete_max()

Maximum in each
row is the last
element

Maximum among
these is to be
deleted

Again O(√N)

5

5

4

4

2

12 17 29 31 40

8 19 22 33 37

10 11 13 14

13 20 25

6 11

delete_max()

Maximum in each
row is the last
element

Maximum among
these is to be
deleted

Again O(√N)

12 17 29 31 40

8 19 22 33 37

10 11 13 14

13 20 25

6 11

5

5

4

3

2

Two dimensional structures

Summary

insert() takes O(√N)

delete_max() takes O(√N)

Processing N jobs takes
O(N√N)

Can we do better?

12 17 29 31 40

8 19 22 33 37

10 13 14

13 20 25 43

6 11

Trees

Maintain a special kind of binary tree called a heap

Balanced: N node tree has height log N

Both insert() and delete_max() take O(log N)

Processing N jobs takes time O(N log N)

Truly flexible, need not fix upper bound for N in
advance

