DESIGN AND ANALYSIS
OF ALGORITHMS

Priority queues

http://www.cmi.ac.in/~madhavan

Job scheduler

* A Job scheduler maintains a list of pending jobs
with their priorities.

* \When the processor is free, the scheduler picks
out the job with maximum priority in the list and
schedules it.

* New jobs may join the list at any time.

* How should the scheduler maintain the list of
pending jobs and their priorities?

Priority queue

* Need to maintain a list of jobs with priorities to
optimise the following operations

* delete_max()
* |dentify and remove job with highest priority
* Need not be unique

* Insert()

* Add a new job to the list

L Inear structures

* Unsorted list
* nsert() takes O(1) time
* delete_max() takes O(n) time
* Sorted list
* delete_max() takes O(1) time
* Insert() takes O(n) time

* Processing a sequence of n jobs requires O(n?) time

Two dimensional structures

First attempt

* Assume N processes enter/
leave the scheduler

* Keep an /N x /N array

* Each row Is maintained In
sorted order

N=25

12 b 291 3 40

10 | 13 | 14

19 120 L 291 43

insert()

Insert 11

* |nsert into first row
that has free space

* Maintain size of
each row

* Takes time O(JN)

12

17

29

31

40

14

22

33

37

10

13

14

13

20

25

43

11

insert()

Insert 11

* |nsert into first row
that has free space

* Maintain size of
each row

* Takes time O(JN)

11

12

17

29

31

40

14

22

33

37

10

13

14

13

20

25

43

11

insert()

Insert 11

* |nsert into first row
that has free space

* Maintain size of
each row

* Takes time O(JN)

11

12

17

29

31

40

14

22

33

37

10

13

14

13

20

25

43

11

insert()

Insert 11

* |nsert into first row
that has free space

* Maintain size of
each row

* Takes time O(JN)

11

12

17

29

31

40

14

22

33

37

10

13

14

13

20

25

43

11

insert()

Insert 11

* |nsert into first row
that has free space

* Maintain size of
each row

* Takes time O(JN)

12

17

29

31

40

14

22

33

37

10

11

13

14

13

20

25

43

11

insert()

Insert 11

* |nsert into first row
that has free space

* Maintain size of
each row

* Takes time O(JN)

12

17

29

31

40

14

22

33

37

10

11

13

14

13

20

25

43

11

delete_max()

* Maximum In each
row IS the last
element

* Maximum among
these Is to be
deleted

* Again O(/N)

12

17

29

31

40

14

22

33

37

10

1]

13

14

13

20

25

43

11

delete_max()

* Maximum In each
row IS the last
element

* Maximum among
these Is to be
deleted

* Again O(/N)

12

17

29

31

40

14

22

33

37

10

1]

13

14

13

20

25

43

11

delete_max()

* Maximum In each
row IS the last
element

* Maximum among
these Is to be
deleted

* Again O(/N)

12

17

29

31

40

14

22

33

37

10

1]

13

14

13

20

25

43

11

delete_max()

* Maximum In each
row IS the last
element

* Maximum among
these Is to be
deleted

* Again O(/N)

12

17

29

31

40

14

22

33

37

10

1]

13

14

13

20

25

11

delete_max()

* Maximum In each
row IS the last
element

* Maximum among
these Is to be
deleted

* Again O(/N)

12

17

29

31

40

14

22

33

37

10

1]

13

14

13

20

25

11

Two dimensional structures

Summary
* insert() takes O(/N) 15117 | o9 | 31 | 40
* delete_max() takes O(/N) 8 |19 | 22 | 33 | 37
* Processing N jobs takes 10 18 14

Sl 13 20 95 143
Can we do better? el

Trees

* Maintain a special kind of binary tree called a heap
* Balanced: N node tree has height log N

* Both insert() and delete_max() take O(log N)
* Processing N jobs takes time O(N log N)

* Truly flexible, need not fix upper bound for N In
advance

