
DESIGN AND ANALYSIS  
OF ALGORITHMS
Union-Find data structure using pointers

MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE
http://www.cmi.ac.in/~madhavan

NPTEL MOOC,JAN-FEB 2015
Week 5, Module 2

http://www.cmi.ac.in/~madhavan

Union-Find data structure
A set of elements S partitioned into subsets, or
components, {C1,C2,…,Ck}

Each s in S belongs to exactly one Cj

Support the following operations

MakeUnionFind(S) — set up initial components,
each s in S is a separate singleton component {s}

Find(s) — returns the component containing s

Union(C,C’) — merges the components C and C’

Implement with arrays/lists

Implement Union-Find using array
Component[1..n], lists Member[1..n] and array
Size[1..n]

MakeUnionFind(S) is O(n)

Find(s) is O(1)

Amortized complexity of each Union(k,k’) is 
O(log m) over a sequence of m operations

Implementing with pointers
Each element of the set is a
node with two fields

Name: the name of the
element

Label: pointer to the set
containing the element

Recall that we use same set
S for component labels

Name Label

i

Name Label

j

Pointers …

Initially, each node points to
itself

Recall that we use same
set S for component
labels

Initially, each element s is
in component s j

i

k

Pointers …

A component is a tree

Root element names the
component, points to
itself

For other elements, follow
path to root to find the
name of the component

i

j

k
l

Auxiliary structures
Node[1..n]

Node[k] points to 
node containing 
element k

Root[1..n]

Root[k] points to root node of
tree for component k

Size[k]

Size of component k

i

j

kl

… i j k l …
Size … - 4 - - …
Root … - - - …
Node … …

Union(k,k’)
Root of one component points
to root of the other

Becomes a direct child of the
other root node

As usual, merge smaller
component into larger one

O(1) operation

Size information in Size[k]

Root[k] points to root of k

i

j

k

l

Union(i,j)

m

Union(k,k’)
Root of one component points
to root of the other

Becomes a direct child of the
other root node

As usual, merge smaller
component into larger one

O(1) operation

Size information in Size[k]

Root[k] points to root of k

i

j

k

l

Union(i,j)

m

Find(j)
Need to traverse the path
from j to root

Path increases by 1 each
time label of j changes

Component size doubles
with each merge

Max component size is n

Path is at most log n

i

j

k

l

Find(u)

m
u

Path compression
Each Find(j) traverses path
from j to root

Remember the answer:
make j point directly point
to root

After each Find(j), retrace
path and reset all pointers
to point directly to root

“Flatten” the tree

i

j

k

l

Find(u)

m
u

Path compression
Each Find(j) traverses path
from j to root

Remember the answer:
make j point directly point
to root

After each Find(j), retrace
path and reset all pointers
to point directly to root

“Flatten” the tree

i

j

k

l

Find(u)

m
u

Path compression
Each Find(j) traverses path
from j to root

Remember the answer:
make j point directly point
to root

After each Find(j), retrace
path and reset all pointers
to point directly to root

“Flatten” the tree

i

j

k

l

Find(u)

m
u

Path compression
First Find(j) takes log n

Then O(1)

Overall, n finds using path
compression take time
almost linear in n

O(n alpha(n))

alpha(n) : inverse
Ackermann function, grows
very slowly

i

j

k

l
m

u

Summary

Implement Union-Find using nodes with pointers

MakeUnionFind(S) is O(n)

Union(k,k’) is O(1)

Find(s) is O(n alpha(n))

Use path compression to speed up repeated
Find(s) operations

