
DESIGN AND ANALYSIS  
OF ALGORITHMS
Union-Find data structure

MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE
http://www.cmi.ac.in/~madhavan

NPTEL MOOC,JAN-FEB 2015
Week 5, Module 1

http://www.cmi.ac.in/~madhavan

Kruskal’s algorithm,
minimum cost spanning tree

Process edges in ascending order of cost

If an edge (u,v) does not create a cycle, add it to the
tree

(u,v) can be added if u and v are in different
components

After adding (u,v) these components get merged

How can we keep track of components and merge
them efficiently?

Union-Find data structure
A set of elements S partitioned into subsets, or
components, {C1,C2,…,Ck}

Each s in S belongs to exactly one Cj

Support the following operations

MakeUnionFind(S) — set up initial components,
each s in S is a separate singleton component {s}

Find(s) — returns the component containing s

Union(C,C’) — merges the components C and C’

Naming the components
Assign a label to each s in S to name its component

Two elements are in the same component if they
have the same label

Choice of labels is not important

Easy option: use S itself as the set of labels

Initially, each s in S is assigned label s

After Merge(u,u’), change all labels u to u’ or vice
versa

Naive implementation
Assume S = {1,2,…,n}

Recall that this is our convention for nodes in a graph

Set up an array Component[1..n]

MakeUnionFind(S): Set Component[i] = i, for all i

Find(i): Return Component[i]

Union(k,k’): For each i in 1..n, if Component[i] == k,
update Component[i] = k’

Complexity …
MakeUnionFind(S): Set Component[i] = i, for all i

O(n)

Find(i): Return Component[i]

O(1)

Union(k,k’): For each i in 1..n, if Component[i] == k,
update Component[i] = k’

O(n)

Sequence of m Union() operations: O(m2)

Improved implementation
As before, array Component[1..n]

Also, for each component k, a list Members[k] of
its members

Array Size[k] records size of list Members[k] 
 
 
 

Improved implementation
Set Component[i] = i, for all i

Initialize Members[i] = [i], Size[i] = 1,
for all i 

Return Component[i] 

For each i in Members[k], 
set Component[i] = k’

Merge Members[k] and Members[k’]

Update Size[k’] = Size[k] + Size[k’]

MakeUnionFind(S)

Find(i)

Union(k,k’)

Why does this help?
List Members[k] allows us to update a component
in time proportional to its size

O(Size[k]) rather than O(n)

How can we make use of Size[k] ?

Always merge smaller set into larger set

If Size[k] < Size[k’], relabel k as k’ else relabel k’
as k

Why does this help?
Always merge smaller set into larger set

If Size[k] < Size[k’], relabel k as k’ else relabel k’
as k

Individual merge operation could still take time
O(n)

Both Size[k], Size[k’] could be about n/2

Need to do more careful “accounting”

Why does this help?

For each element s, size of Component[s] at least
doubles each time it is relabelled

After a sequence of m Union() operations, at most
2m elements have been “touched”

Size of Component[s] is at most 2m

Size of Component[s] grows as 1,2,4,…, so s is
relabelled at most O(log m) times

Why does this help?
After m Union() operations, at most O(m) elements
have had their component updated, each at most
O(log m) times

Recall that the list Members[k] allows us to
update component k in time O(Size[k])

Overall, m Union() operations take O(m log m) time

Works out to O(log m) steps per Union() operation

Amortized complexity of Union() is O(log m)

Back to Kruskal’s algorithm

Sort edges E = [e1,e2,…,em] in ascending order

MakeUnionFind(V)—each vertex j is labelled j

Add edge ek = (u,v), if ek does not create a cycle

Check that Find(u) != Find(v)

If so, merge components: Union(Find(u),Find(v))

Back to Kruskal …

Tree has n-1 edges, so O(n) Union() operations

O(n log n) amortized cost overall

Sorting the edges initially takes time O(m log m),
but m is at most n2, so equivalently O(m log n)

Overall this gives O((m+n) log n), which is same as
Prim’s algorithm using heaps (to be done soon)

Summary

Implement Union-Find using array
Component[1..n], lists Member[1..n] and array
Size[1..n]

MakeUnionFind(S) is O(n)

Find(s) is O(1)

Amortized complexity of each Union(k,k’) is 
O(log m) over a sequence of m operations

