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Spanning tree
Weighted undirected graph, G = (V,E,w)


Assume G is connected


Identify a spanning tree with minimum weight


Tree connecting all vertices in V


Strategy 2: 


Order edges in ascending order by weight


Keep adding edges to combine components



Kruskal’s algorithm
algorithm Kruskal_V1

Let E = [e1,e2,…,em] be edges sorted by weight

TE = [] // List of edges added so far
i = 1   // Index of edge to try next

while TE.length() < n-1 //n-1 edges form a tree
  if adding E[i] to TE does not form a cycle
    TE.append(E[i])
    i = i+1
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Correctness

Kruskal’s algorithm is also a greedy algorithm


We fix in advance that edges will be added in 
ascending order of weight


Why does this achieve a global optimum?



Minimum separator lemma

Let V be partitioned into two non-empty sets U 
and W = V - U


Let e = (u,w) be minimum cost edge with u in U 
and w in W


Assume all edges have different weights


Then every minimum cost spanning tree must 
include e



Correctness of Kruskal’s 
algorithm …

Unlike Prim’s algorithm, at intermediate stages TE is 
not a tree


Edges in TE partition vertices into connected 
components


Initially, each vertex is a separate component


Adding e = (u,v) merges components of u and v


If u and v are already in same component, e 
forms a cycle, hence discarded



Correctness of Kruskal’s 
algorithm …

Suppose ej = (u,v) with u and v in disjoint  
components


Let U = Component(u), W = V - Component(u)


No smaller weight edge in [e1,e2,…,ej-1] 
connects U and W


By minimum separator lemma, ej must be in the 
minimum cost spanning tree



Kruskal’s algorithm 
revisited

To check if e = (u,v) forms a cycle, keep track of 
components


Initially, Component[i] = i for each vertex i


e = (u,v) can be added if Component[u] is different 
from Component[v]


Merge the two components



Kruskal’s algorithm, refined
algorithm Kruskal

Let E = [e1,e2,…,em] be edges sorted by weight

for j in 1 to n     //Initially, each vertex is isolated
  Component[j] = j  //Component names are 1..n

TE = []             //List of edges added so far
i = 1               //Index of edge to try next

while TE.length() < n-1  //n-1 edges form a tree
  Let E[i] = (u,v)
  if Component[u] != Component[v] //E[i] does not form cycle
    TE.append(E[i])
    for j in 1 to n //Merge Component[v] into Component[u]
      if Component[j] == Component[v]
        Component[j] = Component[u] 



Complexity
Initially, sort edges, O(m log m)


m is at most n2, so this is also O(m log n)


Outer loop runs upto m times


In each iteration, we examine one edge


If we add the edge, we have to merge components


O(n) scan to update components


This is done once for each tree edge—O(n) times


Overall O(n2)



Bottleneck
Naive strategy for labelling and merging 
components is inefficient


Components form a partition of the vertex set V


Union-find data structure implements the following 
operations efficiently


find(v)—find the component containing v


union(u,v) —merge the components of u and v


This will bring down the complexity to O(m log n)


