DESIGN AND ANALYSIS
OF ALGORITHMS

Spanning trees: Kruskal’s algorithm

http://www.cmi.ac.in/~madhavan

Spanning tree

* Weighted undirected graph, G = (V,E,w)
* Assume G is connected

* |dentify a spanning tree with minimum weight
* [ree connecting all vertices in V

* Strategy 2:
* Order edges in ascending order by weight

* Keep adding edges to combine components

Kruskal's algorithm

algorithm Kruskal_V1

Let E = [e1,e2,..,en] be edges sorted by weight

TE = [] // List of edges added so far
1 =1 // Index of edge to try next

while TE.length() < n-1 //n-1 edges form a tree
1f adding E[1] to TE does not form a cycle
TE.append(E[1])
1 = 1+1

Kruskal's algorithm

70
a i

(E)
1 10 : 20 ?
10

Kruskal's algorithm

70
s Ui
/\10
L e ; 20\!5& @
A
(@)

Kruskal's algorithm

70
s Ui
/\10
L e ; 20\!5& @
A
(@)

Kruskal's algorithm

70
i Y
1 9 e i @
10 20
%

/e

Kruskal's algorithm

70
b e
10
L s : 20 G
10 A
g,

Kruskal's algorithm

70
i Y
1 9 e i @
10 20
%

/e

Kruskal's algorithm

70
3 4
s @
OO,
10 20
10 A

Kruskal's algorithm

70
3 4
P @
OO,
10 20
10 A

Kruskal's algorithm

70
3 4
s @
OO,
10 20
10 A

Kruskal's algorithm

Kruskal's algorithm

70 @

18 6

10 20 ;

10

Correctness

* Kruskal’s algorithm is also a greedy algorithm

* \\Ve fix iIn advance that edges will be added in
ascending order of weight

* \Why does this achieve a global optimum?

Minimum separator lemma

* Let V be partitioned into two non-empty sets U
and W=V-U

* | et e = (u,w) be minimum cost edge with u in U
and w in W

* Assume all edges have different weights

* Then every minimum cost spanning tree must
include e

Correctness of Kruskal’s
algorithm ...

* Unlike Prim’s algorithm, at intermediate stages TE is
not a tree

* Edges Iin TE partition vertices into connected
components

* |nitially, each vertex is a separate component
* Adding e = (u,v) merges components of u and v

* |f u and v are already in same component, e
forms a cycle, hence discarded

Correctness of Kruskal’s
algorithm ...

* Suppose g = (u,v) with u and v in disjoint
components

* Let U = Component(u), W =V - Component(u)

* No smaller weight edge in [e1,e2,...,6}-1]
connects U and W

* By minimum separator lemma, e must be in the
minimum cost spanning tree

Kruskal's algorithm
revisited

* To check if e = (u,v) forms a cycle, keep track of
components

* |nitially, Component|i] = i for each vertex |

* e = (u,v) can be added if Component|u] is different
from Component[v]

* Merge the two components

Kruskal's algorithm, refined

algorithm Kruskal
Let E = [e1,€2,..,en] be edges sorted by weight

for jind to n //Initially, each vertex is isolated
Component[j] = J //Component names are 1..n

FE //List of edges added so far
i = //Index of edge to try next

while TE.length() < n-1 //n-1 edges form a tree
Let Bl = ClUav)
1f Component[u] != Component[v] //E[i] does not form cycle
TE.append(E[1])
for 7 in 1 to n //Merge Component[v] into Component[u]
1f Component[j] == Component[v]
Component[j] = Component|[u]

Complexity

* |nitially, sort edges, O(m log m)
* m is at most n?, so this is also O(m log n)
* QOuter loop runs upto m times
* |n each iteration, we examine one edge
* |f we add the edge, we have to merge components
* O(n) scan to update components

* This is done once for each tree edge—O(n) times

* Overall O(n?)

Bottleneck

* Naive strategy for labelling and merging
components is inefficient

* Components form a partition of the vertex set V

* Union-find data structure implements the following
operations efficiently

* find(v)—find the component containing v
* union(u,v) —merge the components of u and v

* This will bring down the complexity to O(m log n)

