
DESIGN AND ANALYSIS  
OF ALGORITHMS
Spanning trees: Kruskal’s algorithm

MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE
http://www.cmi.ac.in/~madhavan

NPTEL MOOC,JAN-FEB 2015
Week 4, Module 7

http://www.cmi.ac.in/~madhavan

Spanning tree
Weighted undirected graph, G = (V,E,w)

Assume G is connected

Identify a spanning tree with minimum weight

Tree connecting all vertices in V

Strategy 2:

Order edges in ascending order by weight

Keep adding edges to combine components

Kruskal’s algorithm
algorithm Kruskal_V1

Let E = [e1,e2,…,em] be edges sorted by weight

TE = [] // List of edges added so far
i = 1 // Index of edge to try next

while TE.length() < n-1 //n-1 edges form a tree
 if adding E[i] to TE does not form a cycle
 TE.append(E[i])
 i = i+1

Kruskal’s algorithm

1 2

3 4

5 6

7

70
18

10

6

20
10

10 5

Kruskal’s algorithm

1 2

3 4

5 6

7

70
18

10

6

20
10

10 5

Kruskal’s algorithm

1 2

3 4

5 6

7

70
18

10

6

20
10

10 5

Kruskal’s algorithm

1 2

3 4

5 6

7

70
18

10

6

20
10

10 5

Kruskal’s algorithm

1 2

3 4

5 6

7

70
18

10

6

20
10

10 5

Kruskal’s algorithm

1 2

3 4

5 6

7

70
18

10

6

20
10

10 5

Kruskal’s algorithm

1 2

3 4

5 6

7

70
18

10

6

20
10

10 5

Kruskal’s algorithm

1 2

3 4

5 6

7

70
18

10

6

20
10

10 5

Kruskal’s algorithm

1 2

3 4

5 6

7

70
18

10

6

20
10

10 5

Kruskal’s algorithm

1 2

3 4

5 6

7

70
18

10

6

20
10

10 5

Kruskal’s algorithm

1 2

3 4

5 6

7

70
18

10

6

20
10

10 5

Correctness

Kruskal’s algorithm is also a greedy algorithm

We fix in advance that edges will be added in
ascending order of weight

Why does this achieve a global optimum?

Minimum separator lemma

Let V be partitioned into two non-empty sets U
and W = V - U

Let e = (u,w) be minimum cost edge with u in U
and w in W

Assume all edges have different weights

Then every minimum cost spanning tree must
include e

Correctness of Kruskal’s
algorithm …

Unlike Prim’s algorithm, at intermediate stages TE is
not a tree

Edges in TE partition vertices into connected
components

Initially, each vertex is a separate component

Adding e = (u,v) merges components of u and v

If u and v are already in same component, e
forms a cycle, hence discarded

Correctness of Kruskal’s
algorithm …

Suppose ej = (u,v) with u and v in disjoint
components

Let U = Component(u), W = V - Component(u)

No smaller weight edge in [e1,e2,…,ej-1]
connects U and W

By minimum separator lemma, ej must be in the
minimum cost spanning tree

Kruskal’s algorithm
revisited

To check if e = (u,v) forms a cycle, keep track of
components

Initially, Component[i] = i for each vertex i

e = (u,v) can be added if Component[u] is different
from Component[v]

Merge the two components

Kruskal’s algorithm, refined
algorithm Kruskal

Let E = [e1,e2,…,em] be edges sorted by weight

for j in 1 to n //Initially, each vertex is isolated
 Component[j] = j //Component names are 1..n

TE = [] //List of edges added so far
i = 1 //Index of edge to try next

while TE.length() < n-1 //n-1 edges form a tree
 Let E[i] = (u,v)
 if Component[u] != Component[v] //E[i] does not form cycle
 TE.append(E[i])
 for j in 1 to n //Merge Component[v] into Component[u]
 if Component[j] == Component[v]
 Component[j] = Component[u]

Complexity
Initially, sort edges, O(m log m)

m is at most n2, so this is also O(m log n)

Outer loop runs upto m times

In each iteration, we examine one edge

If we add the edge, we have to merge components

O(n) scan to update components

This is done once for each tree edge—O(n) times

Overall O(n2)

Bottleneck
Naive strategy for labelling and merging
components is inefficient

Components form a partition of the vertex set V

Union-find data structure implements the following
operations efficiently

find(v)—find the component containing v

union(u,v) —merge the components of u and v

This will bring down the complexity to O(m log n)

