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Spanning tree
Weighted undirected graph, G = (V,E,w)


Assume G is connected


Identify a spanning tree with minimum weight


Tree connecting all vertices in V


Strategy 1: 


Start with minimum cost edge


Keep extending the tree with smallest edge



Prim’s algorithm
algorithm Prim_V1

Let e = (i,j) be minimum cost edge in E

TE = [e]     //List of edges in tree
TV = [i,j]   //List of vertices connected by tree

for i = 3 to n
  choose edge f = (u,v) of minimum cost  
    such that u in TV and v not in TV
 TE.append(f)

  TV.append(v)

return(TE)



Correctness
Prim’s algorithm is a greedy algorithm


Like Dijkstra’s single source shortest path


A local heuristic is used to decide which edge to 
add next to the tree


Choices made are never reconsidered


Why does this sequence of local choices achieve 
a global optimum?



Minimum separator lemma
Let V be partitioned into two non-empty sets U 
and W = V - U


Let e = (u,w) be minimum cost edge with u in U 
and w in W


Assume all edges have different weights (relax 
this condition later)


Then every minimum cost spanning tree must 
include e



Minimum separator lemma
Let T be a minimum cost 
spanning tree, e = (u,w) not in T 


u in U and w in W are 
connected by a path p in T


p starts in U and ends in W


Let f = (u’,w’) be the first 
edge on p such that u’ in U 
and w’ in W


Drop f and add e to get a 
smaller spanning tree
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Minimum separator lemma
Proof of the lemma is 
slightly subtle


Not enough to replace 
any edge from U to W by 
e = (u,v)


Need to identify such an 
edge on the path from u 
to v

u v

u’ v’
u’’
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Correctness of Prim’s 
algorithm

Correctness follows directly from minimum 
separator lemma


At each stage, TV and (V-TV) form a non-trivial 
partition of V


The smallest edge connecting TV to (V-TV) must 
belong to every minimum cost spanning tree


This is the edge that the algorithm picks



Further observations

Need not start with smallest edge overall


For any vertex v, smallest edge attached to v 
must be in the minimum cost spanning tree


Consider the partition {v}, V-{v}


Can start with any such edge



Prim’s algorithm revisited
Start with TV = {s} for any vertex s


For each vertex v outside TV, maintain


Distance_TV(v), smallest edge weight from v to TV


Neighbour_TV(v), nearest neighbour of v in TV


At each stage, add to TV (“burn”) vertex u with smallest 
Distance_TV(u)


Update Distance_TV(v), Neighbour_TV(v) for each 
neighbour of u


Very similar to Dijkstra’s algorithm!



Prim’s algorithm, refined
function Prim

for i = 1 to n    
visited[i] = False; Nbr_TV[i] = -1; Dist_TV[i] = infinity    

  TE = []   //List of spanning tree edges
  visited[1] = True
  for each edge (1,j)
    Nbr_TV[j] = 1; Dist_TV[j] = weight(1,j)

for i = 2 to n  
Choose u such that Visited[u] == False     

and Dist_TV[u] is minimum                        
Visited[u] = True    

    TE.append{(u,Nbr_TV[u])}
for each edge (u,v) with Visited[v] == False    

if Dist_TV[v] > weight(u,v)      
Dist_TV[v] = weight(u,v); Nbr_TV[i] = u        
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Complexity
Similar to Dijkstra’s algorithm


Outer loop runs n times


In each iteration, we add one vertex to the tree


O(n) scan to find nearest vertex to add


Each time we add a vertex v, we have to scan all its 
neighbours to update distances


O(n) scan of adjacency matrix to find all neighbours


Overall O(n2)



Complexity

Moving from adjacency matrix to adjacency list


Across n iterations, O(m) to update neighbours


Maintain distance information in a heap


Finding minimum and updating is O(log n)


Overall O(n log n + m log n) = O((m+n) log n)



Minimum separator lemma
We assumed edge weights are distinct


Duplicate edge weights?


Fix an overall ordering {1,2,…,m} of edges


Edge e = ((u,v),i) is smaller than f = ((u’,v’),j) if


weight(e) < weight(f)


weight(e) = weight(f) and i < j



Multiple spanning trees
If edge weights repeat, the minimum cost spanning 
tree is not unique


“Choose u such that Dist_TV(u) is minimum”


Different choices generate different trees


Different ways of ordering edges {1,2,…,m}


In general, number of possible minimum cost 
spanning trees is exponential


Greedy algorithm efficiently picks out one of them


