
DESIGN AND ANALYSIS  
OF ALGORITHMS
Spanning trees: Prim’s algorithm

MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE
http://www.cmi.ac.in/~madhavan

NPTEL MOOC,JAN-FEB 2015
Week 4, Module 6

http://www.cmi.ac.in/~madhavan

Spanning tree
Weighted undirected graph, G = (V,E,w)

Assume G is connected

Identify a spanning tree with minimum weight

Tree connecting all vertices in V

Strategy 1:

Start with minimum cost edge

Keep extending the tree with smallest edge

Prim’s algorithm
algorithm Prim_V1

Let e = (i,j) be minimum cost edge in E

TE = [e] //List of edges in tree
TV = [i,j] //List of vertices connected by tree

for i = 3 to n
 choose edge f = (u,v) of minimum cost  
 such that u in TV and v not in TV
 TE.append(f)

 TV.append(v)

return(TE)

Correctness
Prim’s algorithm is a greedy algorithm

Like Dijkstra’s single source shortest path

A local heuristic is used to decide which edge to
add next to the tree

Choices made are never reconsidered

Why does this sequence of local choices achieve
a global optimum?

Minimum separator lemma
Let V be partitioned into two non-empty sets U
and W = V - U

Let e = (u,w) be minimum cost edge with u in U
and w in W

Assume all edges have different weights (relax
this condition later)

Then every minimum cost spanning tree must
include e

Minimum separator lemma
Let T be a minimum cost
spanning tree, e = (u,w) not in T

u in U and w in W are
connected by a path p in T

p starts in U and ends in W

Let f = (u’,w’) be the first
edge on p such that u’ in U
and w’ in W

Drop f and add e to get a
smaller spanning tree

Minimum separator lemma
Let T be a minimum cost
spanning tree, e = (u,w) not in T

u in U and w in W are
connected by a path p in T

p starts in U and ends in W

Let f = (u’,w’) be the first
edge on p such that u’ in U
and w’ in W

Drop f and add e to get a
smaller spanning tree

u v

Minimum separator lemma
Let T be a minimum cost
spanning tree, e = (u,w) not in T

u in U and w in W are
connected by a path p in T

p starts in U and ends in W

Let f = (u’,w’) be the first
edge on p such that u’ in U
and w’ in W

Drop f and add e to get a
smaller spanning tree

u v

u’ v’

Minimum separator lemma
Proof of the lemma is
slightly subtle

Not enough to replace
any edge from U to W by
e = (u,v)

Need to identify such an
edge on the path from u
to v

u v

u’ v’
u’’

v”

Correctness of Prim’s
algorithm

Correctness follows directly from minimum
separator lemma

At each stage, TV and (V-TV) form a non-trivial
partition of V

The smallest edge connecting TV to (V-TV) must
belong to every minimum cost spanning tree

This is the edge that the algorithm picks

Further observations

Need not start with smallest edge overall

For any vertex v, smallest edge attached to v
must be in the minimum cost spanning tree

Consider the partition {v}, V-{v}

Can start with any such edge

Prim’s algorithm revisited
Start with TV = {s} for any vertex s

For each vertex v outside TV, maintain

Distance_TV(v), smallest edge weight from v to TV

Neighbour_TV(v), nearest neighbour of v in TV

At each stage, add to TV (“burn”) vertex u with smallest
Distance_TV(u)

Update Distance_TV(v), Neighbour_TV(v) for each
neighbour of u

Very similar to Dijkstra’s algorithm!

Prim’s algorithm, refined
function Prim

for i = 1 to n
visited[i] = False; Nbr_TV[i] = -1; Dist_TV[i] = infinity

 TE = [] //List of spanning tree edges
 visited[1] = True
 for each edge (1,j)
 Nbr_TV[j] = 1; Dist_TV[j] = weight(1,j)

for i = 2 to n
Choose u such that Visited[u] == False

and Dist_TV[u] is minimum
Visited[u] = True

 TE.append{(u,Nbr_TV[u])}
for each edge (u,v) with Visited[v] == False

if Dist_TV[v] > weight(u,v)
Dist_TV[v] = weight(u,v); Nbr_TV[i] = u

Prim’s algorithm

1 2

3 4

5 6

7

70
18

10

6

20
10

10 5

Prim’s algorithm

1 2

3 4

5 6

7

70
18

10

6

20
10

10 5

1

Prim’s algorithm

1 2

3 4

5 6

7

70
18

10

6

20
10

10 5

(18,1)

1

Prim’s algorithm

1 2

3 4

5 6

7

70
18

10

6

20
10

10 5

(18,1)

(10,1)
1

Prim’s algorithm

1 2

3 4

5 6

7

70
18

10

6

20
10

10 5

(18,1)

1 2

Prim’s algorithm

1 2

3 4

5 6

7

70
18

10

6

20
10

10 5

1

(6,2)

2

Prim’s algorithm

1 2

3 4

5 6

7

70
18

10

6

20
10

10 5

1

(6,2)

(20,2)
2

Prim’s algorithm

1 2

3 4

5 6

7

70
18

10

6

20
10

10 5

1
(20,2)

2

3

Prim’s algorithm

1 2

3 4

5 6

7

70
18

10

6

20
10

10 5

1
(20,2)

2

3
(70,3)

Prim’s algorithm

1 2

3 4

5 6

7

70
18

10

6

20
10

10 5

1 2

3
(70,3)

5

Prim’s algorithm

1 2

3 4

5 6

7

70
18

10

6

20
10

10 5

1 2

3
(70,3)

5
(10,5)

Prim’s algorithm

1 2

3 4

5 6

7

70
18

10

6

20
10

10 5

1 2

3
(70,3)

5
(10,5)

(10,5)

Prim’s algorithm

1 2

3 4

5 6

7

70
18

10

6

20
10

10 5

1 2

3
(70,3)

5
(10,5)

7

Prim’s algorithm

1 2

3 4

5 6

7

70
18

10

6

20
10

10 5

1 2

3
(70,3)

5
(5,7)

7

Prim’s algorithm

1 2

3 4

5 6

7

70
18

10

6

20
10

10 5

1 2

3
(70,3)

5

7

6

Prim’s algorithm

1 2

3 4

5 6

7

70
18

10

6

20
10

10 5

1 2

3

5

7

6

4

Complexity
Similar to Dijkstra’s algorithm

Outer loop runs n times

In each iteration, we add one vertex to the tree

O(n) scan to find nearest vertex to add

Each time we add a vertex v, we have to scan all its
neighbours to update distances

O(n) scan of adjacency matrix to find all neighbours

Overall O(n2)

Complexity

Moving from adjacency matrix to adjacency list

Across n iterations, O(m) to update neighbours

Maintain distance information in a heap

Finding minimum and updating is O(log n)

Overall O(n log n + m log n) = O((m+n) log n)

Minimum separator lemma
We assumed edge weights are distinct

Duplicate edge weights?

Fix an overall ordering {1,2,…,m} of edges

Edge e = ((u,v),i) is smaller than f = ((u’,v’),j) if

weight(e) < weight(f)

weight(e) = weight(f) and i < j

Multiple spanning trees
If edge weights repeat, the minimum cost spanning
tree is not unique

“Choose u such that Dist_TV(u) is minimum”

Different choices generate different trees

Different ways of ordering edges {1,2,…,m}

In general, number of possible minimum cost
spanning trees is exponential

Greedy algorithm efficiently picks out one of them

