DESIGN AND ANALYSIS
OF ALGORITHMS

Spanning trees: Prim’s algorithm



http://www.cmi.ac.in/~madhavan

Spanning tree

* Weighted undirected graph, G = (V,E,w)
* Assume G is connected

* |dentify a spanning tree with minimum weight
* [ree connecting all vertices in V

* Strategy 1:
* Start with minimum cost edge

* Keep extending the tree with smallest edge




Prim's algorithm
algorithm Prim_V1

Let e = (1,]) be minimum cost edge 1in E

TE [e] //List of edges in tree
TV = [1,3] //List of vertices connected by tree

for .= 3 ‘Lohn
choose edge f = (u,v) of minimum cost
such that u 1tn ™NVoand v not i1n TV
TE.append(f)
TV.append(v)

return(TE)




Correctness

* Prim’s algorithm is a greedy algorithm
* Like Dijkstra’s single source shortest path

* A local heuristic is used to decide which edge to
add next to the tree

* Choices made are never reconsidered

* \Why does this sequence of local choices achieve
a global optimum?




Minimum separator lemma

* | et V be partitioned into two non-empty sets U
and W=V-U

* | et e = (Uu,w) be minimum cost edge with u in U
and w in W

* Assume all edges have different weights (relax
this condition later)

* Then every minimum cost spanning tree must
include e




Minimum separator lemma

* Let T be a minimum cost
spanning tree, e = (u,w) not in T

* Uuin Uand win W are
connected byapathpinT

* p startsin U and ends in W

* Let f = (u’,w’) be the first
edge on p such that u’ in U
and w’ in W

* Drop f and add e to get a
smaller spanning tree




Minimum separator lemma

* Let T be a minimum cost
spanning tree, e = (u,w) not in T

* Uuin Uand win W are
connected byapathpinT

* p startsin U and ends in W

* Let f = (u’,w’) be the first
edge on p such that u’ in U
and w’ in W

* Drop f and add e to get a
smaller spanning tree




Minimum separator lemma

* Let T be a minimum cost
Vv
V>

spanning tree, e = (u,w) not in T

* Uuin Uand win W are
connected byapathpinT

* p startsin U and ends in W

* Let f = (u’,w’) be the first
edge on p such that u’ in U
and w’ in W

* Drop f and add e to get a
smaller spanning tree




Minimum separator lemma

2

* Proof of the lemma is
slightly subtle

* Not enough to replace
any edge from U to W by
e = (u,v)

* Need to identify such an
edge on the path from u
tov




Correctness of Prim’s
algorithm

* Correctness follows directly from minimum
separator lemma

* At each stage, TV and (V-TV) form a non-trivial
partition of V

* The smallest edge connecting TV to (V-TV) must
belong to every minimum cost spanning tree

* This Is the edge that the algorithm picks




Further observations

* Need not start with smallest edge overall

* For any vertex v, smallest edge attached to v
must be in the minimum cost spanning tree

* Consider the partition {v}, V-{v}

* Can start with any such edge




Prim’s algorithm revisited

* Start with TV = {s} for any vertex s

* For each vertex v outside TV, maintain

* Distance_TV(v), smallest edge weight from v to TV
* Neighbour_TV(v), nearest neighbour of vin TV

* At each stage, add to TV (“burn”) vertex u with smallest
Distance_TV(u)

* Update Distance_TV(v), Neighbour_TV(v) for each
neighbour of u

* \ery similar to Dijkstra’s algorithm!




Prim’s algorithm, refineo

function Prim
forc =1 to n
visited[1] = False; Nbr_TV[1] = -1; Dist_TV[1] =

TE = [] //List of spanning tree edges
visited[1l] = True
for each edge (1,73)

Nbr IM[T] = 1s-Dist INEl = weight(l . )

for + = 2 taon
Choose u such that Visited[u] == False
and Dist_TV[u] 1s minimum
Visited[u] = True
TE .append{(Cu,Nbr_TV[u])}
for each edge (u,v) with Visited[v] == False
if Dist_TV[v] > weight(u,v)
Dist_TV[v] = weight(u,v); Nbr_TV[1] = u

infinity




Prim's algorithm

70
ps
/\10
e 20\!5& @
e
(1)




Prim's algorithm

70
ps
/\10
10 s 20\!5& @
e
(1)




Prim's algorithm
(18,1)

70
" O
1 2 £y
10 20
m

@A




Prim's algorithm

(18,1)

f\QO

(10,1)




Prim's algorithm
(18,1)

70
i 83 s
. 10
10 20 \SK @
10

@A




Prim's algorithm
(6,2)

70
i 83 s
. 10
10 20 \SK @
10

@A




Prim's algorithm

(6,2)

51 )
- 6 202
N
)
- - ()
10

@A




Prim's algorithm

51 )
- 6 202
N
)
- - ()
10

@A




Prim's algorithm

(70,3)

51 )
- 6 202
N
)
- - ()
10

@A




Prim's algorithm

(70,3)
70
3 4
in Y

10
10 20 ’ @

1 @A




Prim's algorithm

(70,3)

é@—c\ ®




Prim's algorithm

(70,3)

é@—c\ ®

(10 0)




Prim's algorithm

(70,3)
70
3 4
in Y
10 20

(10,5)

10

10 @




Prim's algorithm

(70,3)
70
3 4
in Y
10 20

(9,7)

10

10 @




Prim's algorithm

(70,3)

3 70 @

10
R ROy
10 0




Prim's algorithm

70 @

18 6

10
R ROy
10 0




Complexity

* Similar to Dijkstra’s algorithm

* Quter loop runs n times
* |n each iteration, we add one vertex to the tree
* O(n) scan to find nearest vertex to add

* Each time we add a vertex v, we have to scan all its
neighbours to update distances

* O(n) scan of adjacency matrix to find all neighbours

* Overall O(nz)




Complexity

* Moving from adjacency matrix to adjacency list
* Across n iterations, O(m) to update neighbours
* Maintain distance information in a heap
* Finding minimum and updating is O(log n)

* Overall O(n log n + m log n) = O((m+n) log n)




Minimum separator lemma

* \We assumed edge weights are distinct
* Duplicate edge weights?
* Fix an overall ordering {1,2,...,m} of edges
* Edge e = ((u,v),i) Is smaller than f = ((u’,Vv’),)) If

* weight(e) < weight(f)

* weight(e) = weight(f) and i < |




Multiple spanning trees

* |f edge weights repeat, the minimum cost spanning
tree Is not unigque

* “Choose u such that Dist_TV(u) is minimum”
* Different choices generate different trees
* Different ways of ordering edges {1,2,...,m}

* |n general, number of possible minimum cost
spanning trees is exponential

* Greedy algorithm efficiently picks out one of them




