DESIGN AND ANALYSIS
OF ALGORITHMS

All-pairs shortest paths

http://www.cmi.ac.in/~madhavan

Welighted grapns

* Negative weights are allowed, but not negative
cycles

* Shortest paths are still well defined

* Bellman-Ford algorithm computes single-source
shortest paths

* Can we compute shortest paths between all pairs
of vertices?

About shortest paths

* Shortest paths will never loop
* Never visit the same vertex twice

* At most length n-1

* Use this to inductively explore all possible shortest
paths efficiently

InAductively exploring
shortest paths

* Simplest shortest path from i to j is a direct edge
(1,J)
* (General case:

Bma iAol] e T

* All of {v1v2 v3 _vm} are distinct, and different
from 1 and |

* Restrict what vertices can appear in this set

InAductively exploring
shortest paths ...

* Recall thatV = {1,2,...,n}

* WX(i,j) : weight of shortest path from i to j among
paths that only go via {1,2,...,k}

* {k+1,...,n} cannot appear on the path
* |, | themselves need not be in {1,2,...,k}
* WYO(i,j) : direct edges

* {1,2,...,n} cannot appear between i and |

InAductively exploring
shortest paths ...

* From W'(i,j) to W(i,j)
* Case 1: Shortest path via {1,2,...,k} does not use vertex k
* WHi,j) = Wi)
* Case 2: Shortest path via {1,2,...,k} does go via k
* K can appear only once along this path
* Break up as paths i to k and k to j, each via {1,2,...,k-1}
* WHGi,) = W' (k) + W' (k,))
* Conclusion: W(i,j) = min(W*<"(i,j) , W*"(i,k) + W (k,}))

Floyd-Warshall algorithm

* WO is adjacency matrix with edge weights

* WOi][j] = weight(i,j) if there is an edge (i,)),
oo, Otherwise

* Forkin1,2,....n

* Compute WK(i,j) from WK'(i,j) using
WX(i,j) = min(WKT(i,j) , W<T(i,k) + W(K,j))

* \Wn contains weights of shortest paths for all pairs

Floyd-Warshall algorithm

* WO is adjacency matrix with edge weights

* WOi][j] = weight(i,j) if there is an edge (i,)),
oo, Otherwise

* Forkin1,2,....n

* Compute WK(i,j) from WK'(i,j) using
WX(i,j) = min(WKT(i,j) , W<T(i,k) + W(K,j))

* \Wn contains weights of shortest paths for all pairs

Floyd-Warshall algorithm

function FloydWarshall

for 1 =1 to n
for- 1 = L ton

Wil li11E0l = 1nfinity

for each edge (1,3) 1n E
WEi][31[@] = weight(1i,])

for k =1 to n
for 1 = 1 ton
for =4 -to.n
WEil[j1[k] = minCW[1][j][k-1],

WLillk]Lk-1] + WLk][3JLk-11)

1:2:3:415:16:7:8

Eia tieid o6 e

et2 t3td 05 6.l 56

£
.

8
8
2
¥
.
s
.
=
-

Complexity

* Easy to see that the complexity is O(n°)

* N iterations

* In each iteration, we update n? entries
* A word about space complexity
* Naive implementation is O(n°)— WIi][j][K]

* Only need two “slices” at a time, WJi][j][k-1] and

WIIG][K]

* Space requirement reduces to O(n?)

Historical remarks

* Floyd-Warshall is a hybrid name

* \Warshall originally proposed an algorithm for
transitive closure

* (Generating path matrix PJi][j] from adjacency
matrix Ali][j]

* Floyd adapted it to compute shortest paths

Computing paths

* A(,j) = 1 iff there is an edge from i to |
* Want P(i,j) = 1 iff there is a path from i to |

* |teratively compute PX(i,j) = 1 iff there is a path from i to |
where all intermediate vertices are in {1,2,...,k}

* {k+1,...,n} cannot appear on the path
* |, | themselves need not be in {1,2,...,k}
* PY%i.j) = A(i,j): direct edges

* {1,2,...,n} cannot appear between i and |

Inductively computing Pli]{j]

* From P*(i,j) to PX(i,j)
* Case 1: There is a path from i to j without using vertex k
* P(ij) = PG
* Case 2: Path via {1,2,...,k} does go via k
* Kk can appear only once along this path
* Break up as paths i to k and k to j, each via {1,2,...,k-1}
* P(i,) = P"(i,k) and P*"(k,])
* Conclusion: PX(i,j) = P*(i,j) or (P*(i,k) and P*"(k,)))

Warshall's algorithm

function Warshall

for 1T — 1 ton
for- 1 = L ton
PEi [1110 = False

for each edge (1,3) 1n E
P[1][J]1[@0] = True

PLALfjlEk=1] or
(P{1 1Lk Ek=1] and PEk1{j|Fk-11)

