NPTEL MOOC, JAN-FEB 2015 Week 4, Module 4

DESIGNAND ANALYSIS OF ALGORITHMS

All-pairs shortest paths

MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE http://www.cmi.ac.in/~madhavan

Weighted graphs

- * Negative weights are allowed, but not negative cycles
- * Shortest paths are still well defined
- Bellman-Ford algorithm computes single-source shortest paths
- * Can we compute shortest paths between all pairs of vertices?

About shortest paths

- * Shortest paths will never loop
 - * Never visit the same vertex twice
 - * At most length n-1
- * Use this to inductively explore all possible shortest paths efficiently

Inductively exploring shortest paths

- * Simplest shortest path from i to j is a direct edge (i,j)
- * General case:

$$i \rightarrow v_1 \rightarrow v_2 \rightarrow v_3 \dots \rightarrow v_m \rightarrow j$$

- * All of {v₁,v₂,v₃ ...,v_m} are distinct, and different from i and j
- * Restrict what vertices can appear in this set

Inductively exploring shortest paths ...

- * Recall that V = {1,2,...,n}
- * W^k(i,j): weight of shortest path from i to j among paths that only go via {1,2,...,k}
 - * {k+1,...,n} cannot appear on the path
 - * i, j themselves need not be in {1,2,...,k}
- * W⁰(i,j): direct edges
 - * {1,2,...,n} cannot appear between i and j

Inductively exploring shortest paths ...

- * From $W^{k-1}(i,j)$ to $W^k(i,j)$
 - * Case 1: Shortest path via {1,2,...,k} does not use vertex k
 - * $W^{k}(i,j) = W^{k-1}(i,j)$
 - * Case 2: Shortest path via {1,2,...,k} does go via k
 - * k can appear only once along this path
 - * Break up as paths i to k and k to j, each via {1,2,...,k-1}
 - * $W^{k}(i,j) = W^{k-1}(i,k) + W^{k-1}(k,j)$
- * Conclusion: $W^{k}(i,j) = min(W^{k-1}(i,j), W^{k-1}(i,k) + W^{k-1}(k,j))$

Floyd-Warshall algorithm

- * Wo is adjacency matrix with edge weights
 - * W⁰[i][j] = weight(i,j) if there is an edge (i,j),
 ∞, otherwise
- * For k in 1,2,...,n
 - * Compute $W^{k}(i,j)$ from $W^{k-1}(i,j)$ using $W^{k}(i,j) = \min(W^{k-1}(i,j), W^{k-1}(i,k) + W^{k-1}(k,j))$
- * Wn contains weights of shortest paths for all pairs

Floyd-Warshall algorithm

- * Wo is adjacency matrix with edge weights
 - * W⁰[i][j] = weight(i,j) if there is an edge (i,j),
 ∞, otherwise
- * For k in 1,2,...,n
 - * Compute $W^{k}(i,j)$ from $W^{k-1}(i,j)$ using $W^{k}(i,j) = \min(W^{k-1}(i,j), W^{k-1}(i,k) + W^{k-1}(k,j))$
- * Wn contains weights of shortest paths for all pairs

Floyd-Warshall algorithm

function FloydWarshall for i = 1 to nfor j = 1 to n W[i][j][0] = infinity for each edge (i,j) in E W[i][j][0] = weight(i,j)for k = 1 to n for i = 1 to nfor j = 1 to n W[i][j][k] = min(W[i][j][k-1],

W[i][k][k-1] + W[k][j][k-1]

	1	2	3	4	5	6	7	8
1	00	10	00	∞	∞	∞	00	8
2	00	∞	00	∞	∞	2	∞	∞
3	00	1	00	1	∞	000	∞	∞
4	∞	∞	∞	000	3	000	∞	∞
5	∞	∞	∞	∞	∞	-1	00	∞
6	∞	∞	-2	00	∞	000	∞	∞
7	00	-4	00	∞	∞	-1	00	∞
8	00	00	00	∞	∞	∞	1	00

	1	2	3	4	5	6	7	8
1	00	10	00	∞	∞	∞	∞	8
2	00	00	00	∞	∞	2	00	00
3	00	1	∞	1	00	00	∞	00
4	00	∞	∞	∞	3	∞	∞	∞
5	00	∞	∞	00	00	-1	00	∞
6	∞	∞	-2	∞	∞	∞	∞	00
7	00	-4	00	∞	∞	-1	∞	00
8	00	00	00	∞	00	∞	1	00

	1	2	3	4	5	6	7	8
1	∞	10	∞	∞	∞	00	00	8
2	∞	∞	00	∞	∞	2	∞	00
3	00	1	00	1	00	00	00	00
4	∞	∞	00	∞	3	∞	∞	00
5	∞	∞	00	∞	∞	-1	∞	00
6	∞	∞	-2	∞	∞	∞	∞	00
7	∞	-4	00	∞	∞	-1	∞	00
8	00	∞	∞	∞	∞	00	1	∞

W

		2	3	4	5	6	7	8
1	00	10	00	∞	∞	00	∞	8
2	00	00	00	∞	∞	2	∞	00
3	00	1	00	1	∞	∞	00	∞
4	∞	∞	∞	00	3	∞	∞	∞
5	00	00	∞	00	∞	-1	∞	∞
6	∞	∞	-2	∞	∞	∞	∞	∞
7	∞	-4	∞	00	00	-1	∞	00
8	∞	∞	∞	∞	000	∞	1	∞

	1	2	3	4	5	6	7	8
1	00	10	00	∞	00	12	00	8
2	00	∞	∞	∞	∞	2	00	∞
3	00	1	00	1	∞	3	∞	∞
4	00	∞	00	∞	3	∞	∞	00
5	00	∞	00	∞	00	-1	00	00
6	∞	∞	-2	∞	00	∞	∞	00
7	00	-4	00	000	∞	-2	00	∞
8	00	00	00	00	00	00	1	00

	1	2	3	4	5	6	7	8
1	00	10	00	∞	∞	∞	∞	8
2	00	∞	00	∞	∞	2	∞	00
3	00	1	00	1	00	∞	∞	00
4	00	00	00	∞	3	∞	∞	∞
5	∞	∞	00	∞	∞	-1	∞	00
6	∞	∞	-2	00	∞	∞	00	00
7	00	-4	00	∞	∞	-1	∞	000
8	00	∞	∞	∞	∞	00	1	00

	1	2	3	4	5	6	7	8
1	00	10	∞	00	00	12	00	8
2	∞	∞	00	∞	∞	2	∞	∞
3	00	1	00	1	∞	3	∞	00
4	00	∞	∞	00	3	∞	00	00
5	∞	∞	∞	∞	∞	-1	∞	∞
6	00	∞	-2	00	00	∞	000	000
7	00	-4	00	00	∞	-2	00	000
8	00	00	00	00	∞	∞	1	∞

 W^2

	1	2	3	4	5	6	7	8
1	00	10	00	∞	00	12	00	8
2	00	∞	∞	∞	∞	2	00	∞
3	00	1	00	1	∞	3	∞	∞
4	00	∞	00	∞	3	∞	∞	00
5	00	∞	00	∞	00	-1	00	00
6	∞	∞	-2	∞	00	∞	∞	00
7	00	-4	00	000	∞	-2	00	∞
8	00	00	00	00	00	00	1	00

	1	2	3	4	5	6	7	8
1	00	10	∞	00	00	12	00	8
2	00	∞	∞	00	∞	2	∞	∞
3	00	1	00	1	∞	3	000	∞
4	00	00	∞	00	3	∞	00	00
5	00	00	∞	∞	∞	-1	00	∞
6	00	-1	-2	-1	00	1	00	00
7	00	-4	000	000	∞	-2	00	00
8	00	∞	∞	∞	∞	∞	1	∞

Complexity

- * Easy to see that the complexity is O(n³)
 - * n iterations
 - * In each iteration, we update n² entries
- * A word about space complexity
 - * Naive implementation is O(n³)—W[i][j][k]
 - * Only need two "slices" at a time, W[i][j][k-1] and W[i][j][k]
 - * Space requirement reduces to O(n²)

Historical remarks

- * Floyd-Warshall is a hybrid name
- Warshall originally proposed an algorithm for transitive closure
 - * Generating path matrix P[i][j] from adjacency matrix A[i][j]
- * Floyd adapted it to compute shortest paths

Computing paths

- * A(i,j) = 1 iff there is an edge from i to j
- * Want P(i,j) = 1 iff there is a path from i to j
- * Iteratively compute P^k(i,j) = 1 iff there is a path from i to j where all intermediate vertices are in {1,2,...,k}
 - * {k+1,...,n} cannot appear on the path
 - * i, j themselves need not be in {1,2,...,k}
- * $P^0(i,j) = A(i,j)$: direct edges
 - * {1,2,...,n} cannot appear between i and j

Inductively computing P[i][j]

- * From $P^{k-1}(i,j)$ to $P^{k}(i,j)$
 - * Case 1: There is a path from i to j without using vertex k
 - * $P^{k}(i,j) = P^{k-1}(i,j)$
 - * Case 2: Path via {1,2,...,k} does go via k
 - * k can appear only once along this path
 - * Break up as paths i to k and k to j, each via {1,2,...,k-1}
 - * $P^{k}(i,j) = P^{k-1}(i,k)$ and $P^{k-1}(k,j)$
- * Conclusion: $P^{k}(i,j) = P^{k-1}(i,j)$ or $(P^{k-1}(i,k))$ and $P^{k-1}(k,j)$

Warshall's algorithm

```
function Warshall
for i = 1 to n
 for j = 1 to n
   P[i][j][0] = False
for each edge (i,j) in E
  P[i][j][0] = True
for k = 1 to n
  for i = 1 to n
    for j = 1 to n
      P[i][j][k] = P[i][j][k-1] or
```

(P[i][k][k-1]] and P[k][j][k-1])