
DESIGN AND ANALYSIS  
OF ALGORITHMS
Dijkstra’s algorithm: analysis

MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE
http://www.cmi.ac.in/~madhavan

NPTEL MOOC,JAN-FEB 2015
Week 4, Module 2

http://www.cmi.ac.in/~madhavan

Dijkstra’s algorithm
Maintain two arrays

Visited[], initially False for all i

Distance[], initially ∞ for all i

For ∞, use sum of all edge weights + 1

Set Distance[1] = 0

Repeat, until all vertices are burnt

Find j with minimum Distance

Set Visited[j] = True

Recompute Distance[k] for each neighbour k of j

Greedy algorithms
Algorithm makes a sequence of choices

Next choice is based on “current best value”

Never go back and change a choice

Dijkstra’s algorithm is greedy

Select vertex with minimum expected burn time

Need to prove that greedy strategy is optimal

Most times, greedy approach fails

Current best choice may not be globally optimal

Correctness
Each new shortest path we discover extends an
earlier one

By induction, assume we have identified shortest
paths to all vertices already burnt

Burnt vertices

s

x

y

Next vertex to burn is v, via x

Cannot later find a shorter path from y to w to v

v

w

Dijkstra’s algorithm
function ShortestPaths(s){ // assume source is s
for i = 1 to n
Visited[i] = False; Distance[i] = infinity

Distance[s] = 0

for i = 1 to n
Choose u such that Visited[u] == False

and Distance[u] is minimum
Visited[u] = True
for each edge (u,v) with Visited[v] == False
if Distance[v] > Distance[u] + weight(u,v)
Distance[v] = Distance[u] + weight(u,v)

Complexity
Outer loop runs n times

In each iteration, we burn one vertex

O(n) scan to find minimum burn time vertex

Each time we burn a vertex v, we have to scan all its
neighbours to update burn times

O(n) scan of adjacency matrix to find all neighbours

Overall O(n2)

Complexity
Does adjacency list help?

Scan neighbours to update burn times

O(m) across all iterations

However, identifying minimum burn time vertex
still takes O(n) in each iteration

Still O(n2)

Complexity
Can maintain ExpectedBurnTime in a more
sophisticated data structure

Different types of trees (heaps, red-black trees)
allow both of the following in O(log n) time

find and delete minimum

insert or update a value

Complexity

With such a tree

Finding minimum burn time vertex takes O(log n)

With adjacency list, updating burn times take
O(log n) each, total O(m) edges

Overall O(n log n + m log n) = O((n+m) log n)

Limitations
What if edge weights can be negative?

Our correctness argument is no longer valid

Burnt vertices

s

x

y

Next vertex to burn is v, via x

Might find a shorter path later with negative weights
from y to w to v

v

w

Why negative weights?
Weights represent money

Taxi driver earns money from airport to city,
travels empty to next pick-up point

Some segments earn money, some lose money

Chemistry

Nodes are compounds, edges are reactions

Weights are energy absorbed/released by reaction

Handling negative edges
Negative cycle: loop with a negative total weight

Problem is not well defined with negative cycles

Repeatedly traversing cycle pushes down cost
without a bound

With negative edges, but no negative cycles, other
algorithms exist (will see later)

Bellman-Ford

Floyd-Warshall all pairs shortest path

