DESIGN AND ANALYSIS
OF ALGORITHMS

Shortest paths in weighted graphs

http://www.cmi.ac.in/~madhavan

Recall that ...

* BFS and DFS are two systematic ways to explore a
graph

* Both take time linear in the size of the graph with
adjacency lists

* Recover paths by keeping parent information

* BFS can compute shortest paths, in terms of
number of edges

* DFS numbering can reveal many interesting features

Adding edge weights

* |abel each edge with a number—cost
* Ticket price on a flight sector
* Tolls on highway segment
* Distance travelled between two stations

* Typical time between two locations during peak
hour traffic

Shortest paths

* Weighted graph
* G=(V,E) together with
* Weight function, w : E—Reals

* Let e1=(vo,v1), €2 = (V1,V2), ..., € = (Vn-1,Vn) b€ a path
from vo to vn

* Cost of the path is w(e1) + w(ez) + ... + w(en)

* Shortest path from vo to v, : minimum cost

Shortest paths ...

* BFS finds path with fewest number of edges

* |[n a weighted graph, need not be the shortest path

70
80 % 6
10

(4)
— /5\ 50 @
m@ﬁ

Shortest path problems

* Single source

* Find shortest paths from some fixed vertex, say
1, 1o every other vertex

* [ransport finished product from factory (single
source) to all retail outlets

* Courier company delivers items from
distribution centre (single source) to addressees

Shortest path problems

* All pairs

* Find shortest paths between every pair of
vertices | and |

* Rallway routes, shortest way to travel between
any pair of cities

1his lecture...

* Single source shortest paths

* For instance, shortest paths from 1 to 2,3,...,7

70
2
1 10

(4)
S Cenel
m@ﬁ

Single source shortest paths

* Imagine vertices are oil depots, edges are pipelines
* Set fire to oll depot at vertex 1

* Fire travels at uniform speed along each pipeline
* First oil depot to catch fire after 1 is nearest vertex

* Next oll depot is second nearest vertex

Single source shortest paths

70
f%@
T
- 2 5 (6)

Single source shortest paths

70
@ﬁ\g 3
50
“‘1 10 2 /é\ @

20
0 10 A

i

Single source shortest paths

Single source shortest paths
t=16

u

Single source shortest paths

Single source shortest paths

Single source shortest paths

t=16

u

n

Single source shortest paths

Single source shortest paths

* Compute expected time to burn of each vertex

* Update this each time a new vertex burns

70
80 6

(4)
: 10 . 20 @ = @
m@ﬁ

Single source shortest paths

* Compute expected time to burn of each vertex

* Update this each time a new vertex burns

(o o) (o o)

70 @

80 6
(oo (oo
o0
; 2 & 2

10 20
(o o) (o o)
m A

Single source shortest paths

* Compute expected time to burn of each vertex

* Update this each time a new vertex burns

(o o) (o o)

70 @

80 6

~ 50
W01 10 i 20 \5& @
o

Single source shortest paths

* Compute expected time to burn of each vertex

* Update this each time a new vertex burns
80 o

70 @

80 6 .
50
2 (5) @

10 10 20 /
10 5

Single source shortest paths

* Compute expected time to burn of each vertex

* Update this each time a new vertex burns
80 o

70
e O
%0 (6)
1 2 5
N 0 10 \ijg 2 m A

Single source shortest paths

* Compute expected time to burn of each vertex

* Update this each time a new vertex burns
16 o

70
e ()
50
1 2 (5) @
N 0 10 N T 20 m A

Single source shortest paths

* Compute expected time to burn of each vertex

* Update this each time a new vertex burns

Single source shortest paths

* Compute expected time to burn of each vertex

* Update this each time a new vertex burns

Single source shortest paths

* Compute expected time to burn of each vertex

* Update this each time a new vertex burns
16

& ®

80

M‘ 10 WO 20 W\& /

Single source shortest paths

* Compute expected time to burn of each vertex

* Update this each time a new vertex burns
86

Single source shortest paths

* Compute expected time to burn of each vertex

* Update this each time a new vertex burns
16

v L
= L

80

x5 (8‘5
1 2 5
mo 10 “‘10 20 “‘m A
no.

Single source shortest paths

* Compute expected time to burn of each vertex

* Update this each time a new vertex burns
16

v L
= L

80

x5 (4(;
1 2 5
mo 10 “‘10 20 “‘m A
no.

Single source shortest paths

* Compute expected time to burn of each vertex

* Update this each time a new vertex burns
16

v L
= L

80

x5 (4‘;“‘
1 2 5
mo 10 “‘10 20 “‘m A
no.

Single source shortest paths

* Compute expected time to burn of each vertex

* Update this each time a new vertex burns
16

& O

80

(“ 10 WO 20 M‘\&

Algorithmically

* Maintain two arrays
* BurntVertices[1, initially False for all i
* ExpectedBurnTime[], initially o for all |

* For «o, use sum of all edge weights + 1

* Set ExpectedBurnTime[1] = 0

* Repeat, until all vertices are burnt
* Find j with minimum ExpectedBurnTime
* Set BurntVertices[j] = True

* Recompute ExpectedBurnTime[k] for each neighbour k of j

Dijkstra’s algorithm

function ShortestPaths(s){ // assume source is s
tor't — T fo n
BV{1] = Faise; EBIL1] = anfinity

EBTls] = 0

for r = 1L to n
Choose u such that BV[u] == False
and EBT[u] 1s minimum
BV[u] = True
for each edge (u,v) with BV[v] == False
1f EBT[v] > EBT[u] + weight(Cu,Vv)
EBT[v] = EBT[u] + weight(u,Vv)

Dijkstra’s algorithm

function ShortestPaths(s){ // assume source is s
for 1 — 1 fo.n
Visited[1] = False; Distance[1] = infinity

Distance[s] = 0

for 1T = 1L ton
Choose u such that Visited[u] == False
and Distance[u] 1s minimum
Visited[u] = True
for each edge (u,v) with Visited[v] == False
1f Distance[v] > Distance[u] + weight(u,v)
Distance[v] = Distance[u] + weight(u,Vv)

