DESIGN AND ANALYSIS
OF ALGORITHMS

Shortest paths in weighted graphs



http://www.cmi.ac.in/~madhavan

Recall that ...

* BFS and DFS are two systematic ways to explore a
graph

* Both take time linear in the size of the graph with
adjacency lists

* Recover paths by keeping parent information

* BFS can compute shortest paths, in terms of
number of edges

* DFS numbering can reveal many interesting features




Adding edge weights

* |abel each edge with a number—cost
* Ticket price on a flight sector
* Tolls on highway segment
* Distance travelled between two stations

* Typical time between two locations during peak
hour traffic




Shortest paths

* Weighted graph
* G=(V,E) together with
* Weight function, w : E—Reals

* Let e1=(vo,v1), €2 = (V1,V2), ..., € = (Vn-1,Vn) b€ a path
from vo to vn

* Cost of the path is w(e1) + w(ez) + ... + w(en)

* Shortest path from vo to v, : minimum cost




Shortest paths ...

* BFS finds path with fewest number of edges

* |[n a weighted graph, need not be the shortest path
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Shortest path problems

* Single source

* Find shortest paths from some fixed vertex, say
1, 1o every other vertex

* [ransport finished product from factory (single
source) to all retail outlets

* Courier company delivers items from
distribution centre (single source) to addressees




Shortest path problems

* All pairs

* Find shortest paths between every pair of
vertices | and |

* Rallway routes, shortest way to travel between
any pair of cities




1his lecture...

* Single source shortest paths

* For instance, shortest paths from 1 to 2,3,...,7
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Single source shortest paths

* Imagine vertices are oil depots, edges are pipelines
* Set fire to oll depot at vertex 1

* Fire travels at uniform speed along each pipeline
* First oil depot to catch fire after 1 is nearest vertex

* Next oll depot is second nearest vertex




Single source shortest paths
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Single source shortest paths
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Single source shortest paths




Single source shortest paths
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Single source shortest paths




Single source shortest paths

* Compute expected time to burn of each vertex

* Update this each time a new vertex burns
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Single source shortest paths

* Compute expected time to burn of each vertex

* Update this each time a new vertex burns
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Single source shortest paths

* Compute expected time to burn of each vertex

* Update this each time a new vertex burns
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Single source shortest paths

* Compute expected time to burn of each vertex

* Update this each time a new vertex burns
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Single source shortest paths

* Compute expected time to burn of each vertex

* Update this each time a new vertex burns
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Single source shortest paths

* Compute expected time to burn of each vertex

* Update this each time a new vertex burns
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Single source shortest paths

* Compute expected time to burn of each vertex

* Update this each time a new vertex burns




Single source shortest paths

* Compute expected time to burn of each vertex

* Update this each time a new vertex burns




Single source shortest paths

* Compute expected time to burn of each vertex

* Update this each time a new vertex burns
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Single source shortest paths

* Compute expected time to burn of each vertex

* Update this each time a new vertex burns
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Single source shortest paths

* Compute expected time to burn of each vertex

* Update this each time a new vertex burns
16

v L
= L

80

x5 (8‘5
1 2 5
mo 10 “‘10 20 “‘m A
no.




Single source shortest paths

* Compute expected time to burn of each vertex

* Update this each time a new vertex burns
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Single source shortest paths

* Compute expected time to burn of each vertex

* Update this each time a new vertex burns
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Single source shortest paths

* Compute expected time to burn of each vertex

* Update this each time a new vertex burns
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Algorithmically

* Maintain two arrays
* BurntVertices[ 1, initially False for all i
* ExpectedBurnTime[ ], initially o for all |

* For «o, use sum of all edge weights + 1

* Set ExpectedBurnTime[1] = 0

* Repeat, until all vertices are burnt
* Find j with minimum ExpectedBurnTime
* Set BurntVertices[j] = True

* Recompute ExpectedBurnTime[k] for each neighbour k of j




Dijkstra’s algorithm

function ShortestPaths(s){ // assume source is s
tor't — T fo n
BV{1] = Faise; EBIL1 ] = anfinity

EBTls] = 0

for r = 1L to n
Choose u such that BV[u] == False
and EBT[u] 1s minimum
BV[u] = True
for each edge (u,v) with BV[v] == False
1f EBT[v] > EBT[u] + weight(Cu,Vv)
EBT[v] = EBT[u] + weight(u,Vv)




Dijkstra’s algorithm

function ShortestPaths(s){ // assume source is s
for 1 — 1 fo.n
Visited[1] = False; Distance[1] = infinity

Distance[s] = 0

for 1T = 1L ton
Choose u such that Visited[u] == False
and Distance[u] 1s minimum
Visited[u] = True
for each edge (u,v) with Visited[v] == False
1f Distance[v] > Distance[u] + weight(u,v)
Distance[v] = Distance[u] + weight(u,Vv)




