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Recall that …
BFS and DFS are two systematic ways to explore a 
graph


Both take time linear in the size of the graph with 
adjacency lists


Recover paths by keeping parent information


BFS can compute shortest paths, in terms of 
number of edges


DFS numbering can reveal many interesting features



Adding edge weights

Label each edge with a number—cost


Ticket price on a flight sector


Tolls on highway segment


Distance travelled between two stations


Typical time between two locations during peak 
hour traffic



Shortest paths
Weighted graph 

G=(V,E)  together with


Weight function, w : E→Reals


Let e1=(v0,v1), e2 = (v1,v2), …, en = (vn-1,vn) be a path 
from v0 to vn


Cost of the path is w(e1) + w(e2) + … + w(en)


Shortest path from v0 to vn : minimum cost



Shortest paths …
BFS finds path with fewest number of edges


In a weighted graph, need not be the shortest path
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Shortest path problems

Single source


Find shortest paths from some fixed vertex, say 
1, to every other vertex


Transport finished product from factory (single 
source) to all retail outlets


Courier company delivers items from 
distribution centre (single source) to addressees



Shortest path problems

All pairs


Find shortest paths between every pair of 
vertices i and j


Railway routes, shortest way to travel between 
any pair of cities



This lecture…
Single source shortest paths


For instance, shortest paths from 1 to 2,3,…,7
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Single source shortest paths

Imagine vertices are oil depots, edges are pipelines


Set fire to oil depot at vertex 1


Fire travels at uniform speed along each pipeline


First oil depot to catch fire after 1 is nearest vertex


Next oil depot is second nearest vertex


…



Single source shortest paths
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Single source shortest paths
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Single source shortest paths
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Compute expected time to burn of each vertex


Update this each time a new vertex burns
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Compute expected time to burn of each vertex
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Compute expected time to burn of each vertex


Update this each time a new vertex burns

1 2

3 4

5 6

7

70
80

10

6

20
50

10 5

Single source shortest paths

0 10

16

30

86

40

45



Algorithmically
Maintain two arrays


BurntVertices[ ], initially False for all i

ExpectedBurnTime[ ], initially ∞ for all i


For ∞, use sum of all edge weights + 1


Set ExpectedBurnTime[1] = 0


Repeat, until all vertices are burnt


Find j with minimum ExpectedBurnTime


Set BurntVertices[j] = True


Recompute ExpectedBurnTime[k] for each neighbour k of j



Dijkstra’s algorithm
function ShortestPaths(s){ // assume source is s
for i = 1 to n 
BV[i] = False; EBT[i] = infinity  

EBT[s] = 0 

for i = 1 to n 
Choose u such that BV[u] == False   

and EBT[u] is minimum            
BV[u] = True    
for each edge (u,v) with BV[v] == False
if EBT[v] > EBT[u] + weight(u,v)   
EBT[v] = EBT[u] + weight(u,v)    



Dijkstra’s algorithm
function ShortestPaths(s){ // assume source is s
for i = 1 to n 
Visited[i] = False; Distance[i] = infinity  

Distance[s] = 0 

for i = 1 to n 
Choose u such that Visited[u] == False   

and Distance[u] is minimum            
Visited[u] = True  
for each edge (u,v) with Visited[v] == False  
if Distance[v] > Distance[u] + weight(u,v)   
Distance[v] = Distance[u] + weight(u,v)    


