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Directed Acyclic Graphs 

G = (V,E), a directed graph


No cycles


No directed path from any v in V back to itself


Such graphs are also called DAGs



Topological ordering

Given a DAG G = (V,E), V = {1,2,…,n}


Enumerate the vertices as {i1,i2,…,in} so that


For any edge (j,k) in E, 


	 	 j appears before k in the enumeration


Also known as topological sorting
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Longest path in a DAG

Equivalent to finding longest path in the DAG


If indegree(j) = 0, longest_path_to(j) = 0


If indegree(k) > 0, longest_path_to(k) is


	 	 1 + max{ longest_path_to(j) } among all


	 	 	 incoming neighbours j of k



Longest path in a DAG
To compute longest_path_to(k)


Need longest_path_to(j) for all incoming 
neighbours of k 


If j is an incoming neighbour, (j,k) in E


j is enumerated before k in topological order


Hence, compute longest_path_to(i) in topological 
order



Longest path in a DAG
Let i1,i2,…,in be a topological ordering of V


All neighbours of ik appear before it in this list


From left to right, compute longest_path_to(ik) as 


	 	 1 + max{ longest_path_to(ij) } among all


	 	 	 incoming neighbours ij of ik


Can combine this calculation with topological sort
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Topological ordering with longest path
function TopologicalOrderWithLongestPath(G)
for i = 1 to n 
indegree[i] = 0; LPT[i] = 0  
for j = 1 to n  
indegree[i] = indegree[i] + A[j][i]   

for i = 1 to n 
choose j with indegree[j] = 0  
enumerate j   
indegree[j] = -1   
for k = 1 to n   
if A[j][k] == 1    
indegree[k] = indegree[k]-1     
LPT[k] = max(LPT[k], 1 + LPT[j])     



This implementation has complexity is O(n2)


As before, we can use adjacency lists to improve 
the complexity to O(m+n)

Topological ordering with longest path



function TopologicalOrder(G) //Edges are in adjacency list
for i = 1 to n { indegree[i] = 0; LPT[i] = 0} 
  
for i = 1 to n
for (i,j) in E //proportional to outdegree(i)  
indegree[j] = indegree[j] + 1   

 
for i = 1 to n 
if indegree[i] == 0 { add i to Queue }  

 
while Queue is not empty 
j = remove_head(Queue)  
for (j,k) in E //proportional to outdegree(j)  
indegree[k] = indegree[k] - 1     
LPT[k] = max(LPT[k], 1 + LPT[j])
if indegree[k] == 0 { add k to Queue }   

Topological ordering with longest path 2



Summary
Dependencies are naturally modelled using DAGs


Topological ordering lists vertices without violating 
dependencies


Longest path in a DAG represents minimum 
number of steps to list all vertices in groups


Note: Computing the longest path with no 
duplicate vertices in an arbitrary graph is not 
known to have any efficient algorithm!


