#### NPTEL MOOC, JAN-FEB 2015 Week 3, Module 7

# DESIGN AND ANALYSIS OF ALGORITHMS

**DAGs: Longest paths** 

MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE http://www.cmi.ac.in/~madhavan

# **Directed Acyclic Graphs**

- \* G = (V,E), a directed graph
- \* No cycles
  - \* No directed path from any v in V back to itself
- \* Such graphs are also called DAGs

# **Topological ordering**

- \* Given a DAG G = (V,E), V =  $\{1,2,...,n\}$
- \* Enumerate the vertices as {i1,i2,...,in} so that
  - \* For any edge (j,k) in E,
    - j appears before k in the enumeration
- \* Also known as topological sorting













# Longest path in a DAG

- \* Equivalent to finding longest path in the DAG
- \* If indegree(j) = 0, longest\_path\_to(j) = 0
- \* If indegree(k) > 0, longest\_path\_to(k) is
  - 1 + max{ longest\_path\_to(j) } among all

incoming neighbours j of k

# Longest path in a DAG

- \* To compute longest\_path\_to(k)
  - \* Need longest\_path\_to(j) for all incoming neighbours of k
- \* If j is an incoming neighbour, (j,k) in E
  - \* j is enumerated before k in topological order
- \* Hence, compute longest\_path\_to(i) in topological order

# Longest path in a DAG

- \* Let i1,i2,...,in be a topological ordering of V
- \* All neighbours of ik appear before it in this list
- \* From left to right, compute longest\_path\_to(ik) as
  - 1 + max{ longest\_path\_to(ij) } among all

incoming neighbours ij of ik

\* Can combine this calculation with topological sort













| 1 | 4 | 2 | 5 | 3 |  |  |
|---|---|---|---|---|--|--|
| 0 | 1 | 0 | 1 | 1 |  |  |



| 1 | 4 | 2 | 5 | 3 | 6 |  |
|---|---|---|---|---|---|--|
| 0 | 1 | 0 | 1 | 1 | 2 |  |



| 1 | 4 | 2 | 5 | 3 | 6 | 7 |  |
|---|---|---|---|---|---|---|--|
| 0 | 1 | 0 | 1 | 1 | 2 | 3 |  |

| 1 | 4 | 2 | 5 | 3 | 6 | 7 | 8 |
|---|---|---|---|---|---|---|---|
| 0 | 1 | 0 | 1 | 1 | 2 | 3 | 4 |

#### Topological ordering with longest path

```
function TopologicalOrderWithLongestPath(G)
 for i = 1 to n
   indegree[i] = 0; LPT[i] = 0
   for j = 1 to n
    indegree[i] = indegree[i] + A[j][i]
 for i = 1 to n
   choose j with indegree[j] = 0
    enumerate j
    indegree[j] = -1
    for k = 1 to n
      if A[j][k] == 1
        indegree[k] = indegree[k]-1
        LPT[k] = max(LPT[k], 1 + LPT[j])
```

#### Topological ordering with longest path

- This implementation has complexity is O(n<sup>2</sup>)
- As before, we can use adjacency lists to improve the complexity to O(m+n)

Topological ordering with longest path 2
function TopologicalOrder(G) //Edges are in adjacency list
for i = 1 to n { indegree[i] = 0; LPT[i] = 0}

```
for i = 1 to n
for (i,j) in E //proportional to outdegree(i)
    indegree[j] = indegree[j] + 1
```

```
for i = 1 to n
    if indegree[i] == 0 { add i to Queue }
```

```
while Queue is not empty
j = remove_head(Queue)
for (j,k) in E //proportional to outdegree(j)
    indegree[k] = indegree[k] - 1
    LPT[k] = max(LPT[k], 1 + LPT[j])
    if indegree[k] == 0 { add k to Queue }
```

# Summary

- \* Dependencies are naturally modelled using DAGs
- Topological ordering lists vertices without violating dependencies
- Longest path in a DAG represents minimum number of steps to list all vertices in groups
- Note: Computing the longest path with no duplicate vertices in an arbitrary graph is not known to have any efficient algorithm!