DESIGN AND ANALYSIS
OF ALGORITHMS

DAGs: Longest paths

http://www.cmi.ac.in/~madhavan

Directed Acyclic Graphs

* G = (V,E), a directed graph
* No cycles
* No directed path from any v in V back to itself

* Such graphs are also called DAGs

lopological ordering

* Givena DAG G = (VE),V={1.2,...,n}
* Enumerate the vertices as {i1,io,...,in} SO that
* For any edge (J,k) in E,
| appears before k in the enumeration

* Also known as topological sorting

Questions about DAGSs
* Imagine 0 Q

these are
=3

courses
* Edges a 6
are pre-

requisites

O @ O

* \What is the minimum number of semesters to
complete the programme?

Questions about DAGs

* Imagine '—] A

these are S

COourses
(3)
(5

* Edges
are pre-
requisites

O @ O

* \What is the minimum number of semesters to
complete the programme?

Questions about DAGs

* Imagine .. ‘

these are ‘W
courses e

* Edges ; a
are pre- A o~

requisites ' 6‘

O @ O

* \What is the minimum number of semesters to
complete the programme?

Questions about DAGs

* Imagine .. ‘

these are ‘W
COuUrses
e
* Edges ; 9 6
are pre- A o~
requisites ' ‘
> .
63 o=ty

* \What is the minimum number of semesters to
complete the programme?

Questions about DAGs

* Imagine
these are
courses

* Edges
are pre-
requisites

* \What is the minimum number of semesters to
complete the programme?

Questions about DAGs

* Imagine
these are
courses

* Edges
are pre-
requisites

* \What is the minimum number of semesters to
complete the programme?

| ongest path in a DAG

* Equivalent to finding longest path in the DAG
* |f indegree(j)) = 0, longest_path_to(j)) =0
* |f indegree(k) > 0O, longest_path_to(k) is

1 + max{ longest_path_to(j) } among all

iIncoming neighbours | of Kk

| ongest path in a DAG

* [o compute longest_path_to(k)

* Need longest_path_to(j) for all incoming
neighbours of k

* |f | Is an iIncoming neighbour, (j,k) in E
* | IS enumerated before Kk in topological order

* Hence, compute longest_path_to(i) in topological
order

| ongest path in a DAG

* Letis,lo,...,In be a topological ordering of V
* All neighbours of ik appear before it in this list
* From left to right, compute longest_path_to(ik) as
1 + max{ longest_path_to(i}) } among all
incoming neighbours j; of ik

* Can combine this calculation with topological sort

Indegree
Longest Path

b 2

(3)

2

{8

Indegree
Longest Path

Indegree
Longest Path 0 -0

Indegree
Longest Path

Indegree
Longest Path

Indegree

Longest Path
00—»0 1 —>Q1
2 0 2

Indegree
Longest Path

Indegree
Longest Path

Indegree
Longest Path

Topological ordering with longest path

function TopologicalOrderWithLongestPath(G)
tor @ = I ton
indegree[1] = @; LPT[1] = 0O
tor] =1 ton
indegree[1] = 1indegree[1] + A[3J][1]

for 1 =1 ton
choose j with indegree[j] = 0
enumerate j
indegree[j] = -1
for k = 1 ton
it A[j][k] ==
indegree[k] = indegree[k]-1
LRI kel = maxCEPTEKR], 1:+% LPE[F])

Topological ordering with longest path

* This implementation has complexity is O(n?)

* As before, we can use adjacency lists to improve
the complexity to O(m+n)

Topological ordering with longest path 2

function TopologicalOrder(G) //Edges are in adjacency list

for 1 =1 to n { 1hdegreef1]| = 0 |LPFi1]

for 1 =1 ton
for (1,3) 1n E //proportional to outdegree(i)
indegree[j] = indegree[j] + 1

for i = 1 ton
1f indegree[1] == 0 { add 1 to Queue }

while Queue 1s not empty
j = remove_head(Queue)
for (j,k) 1n E //proportional to outdegree(j)
indegree[k] = indegreel[k] - 1
LREEk) = maxCLPEEk] 1+ PEF7])
1f indegree[k] == 0 { add k to Queue }

= o

Summary

* Dependencies are naturally modelled using DAGs

* Jopological ordering lists vertices without violating
dependencies

* | ongest path in a DAG represents minimum
number of steps to list all vertices in groups

* Note: Computing the longest path with no
duplicate vertices in an arbitrary graph is not
known to have any efficient algorithm!

