
DESIGN AND ANALYSIS  
OF ALGORITHMS
DAGs: Longest paths

MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE
http://www.cmi.ac.in/~madhavan

NPTEL MOOC,JAN-FEB 2015
Week 3, Module 7

http://www.cmi.ac.in/~madhavan

Directed Acyclic Graphs

G = (V,E), a directed graph

No cycles

No directed path from any v in V back to itself

Such graphs are also called DAGs

Topological ordering

Given a DAG G = (V,E), V = {1,2,…,n}

Enumerate the vertices as {i1,i2,…,in} so that

For any edge (j,k) in E,

	 	 j appears before k in the enumeration

Also known as topological sorting

1 2

3

4 5

6 7 8

Questions about DAGs
Imagine
these are
courses

Edges
are pre-
requisites

What is the minimum number of semesters to
complete the programme?

1 2

3

4 5

6 7 8

Questions about DAGs
Imagine
these are
courses

Edges
are pre-
requisites

What is the minimum number of semesters to
complete the programme?

1 2

3

4 5

6 7 8

Questions about DAGs
Imagine
these are
courses

Edges
are pre-
requisites

What is the minimum number of semesters to
complete the programme?

1 2

3

4 5

6 7 8

Questions about DAGs
Imagine
these are
courses

Edges
are pre-
requisites

What is the minimum number of semesters to
complete the programme?

1 2

3

4 5

6 7 8

Questions about DAGs
Imagine
these are
courses

Edges
are pre-
requisites

What is the minimum number of semesters to
complete the programme?

1 2

3

4 5

6 7 8

Questions about DAGs
Imagine
these are
courses

Edges
are pre-
requisites

What is the minimum number of semesters to
complete the programme?

Longest path in a DAG

Equivalent to finding longest path in the DAG

If indegree(j) = 0, longest_path_to(j) = 0

If indegree(k) > 0, longest_path_to(k) is

	 	 1 + max{ longest_path_to(j) } among all

	 	 	 incoming neighbours j of k

Longest path in a DAG
To compute longest_path_to(k)

Need longest_path_to(j) for all incoming
neighbours of k

If j is an incoming neighbour, (j,k) in E

j is enumerated before k in topological order

Hence, compute longest_path_to(i) in topological
order

Longest path in a DAG
Let i1,i2,…,in be a topological ordering of V

All neighbours of ik appear before it in this list

From left to right, compute longest_path_to(ik) as

	 	 1 + max{ longest_path_to(ij) } among all

	 	 	 incoming neighbours ij of ik

Can combine this calculation with topological sort

1 2

3

4 5

6 7 8

Indegree
0 0

2

1
1

2 1 4

Longest Path 0 0

0

0

0 0 0

0

2

3

4 5

6 7 8

Indegree
0

2 1 4

1

0
0

1

Longest Path 0

0 0 0

1

1
1

0

2

3
5

6 7 8

Indegree
0

1

1

0
1

4

1 3

Longest Path 0

0

1
1

2 2

0 1

3
5

6 7 8

Indegree

1

1

0

4

1

0

2

2

Longest Path

0

1
1

2 2

0 1 0

3

6 7 8

Indegree

1

1 4

1

0

2

1

5

Longest Path

0

1

2 2

0 1 0 1

6 7 8

Indegree

1

1 4 2

1

5

0

3

Longest Path

0 22

0 1 0 1 1

7 8

Indegree

1 4 2

1

5 3 6

0

Longest Path

23

0 1 0 1 1 2

8

Indegree

1 4 2 5 3 6 7

0

Longest Path

4

0 1 0 1 1 2 3

Indegree

1 4 2 5 3 6 7 8

Longest Path

0 1 0 1 1 2 3 4

Topological ordering with longest path
function TopologicalOrderWithLongestPath(G)
for i = 1 to n
indegree[i] = 0; LPT[i] = 0
for j = 1 to n
indegree[i] = indegree[i] + A[j][i]

for i = 1 to n
choose j with indegree[j] = 0
enumerate j
indegree[j] = -1
for k = 1 to n
if A[j][k] == 1
indegree[k] = indegree[k]-1
LPT[k] = max(LPT[k], 1 + LPT[j])

This implementation has complexity is O(n2)

As before, we can use adjacency lists to improve
the complexity to O(m+n)

Topological ordering with longest path

function TopologicalOrder(G) //Edges are in adjacency list
for i = 1 to n { indegree[i] = 0; LPT[i] = 0}
 
for i = 1 to n
for (i,j) in E //proportional to outdegree(i)
indegree[j] = indegree[j] + 1

for i = 1 to n
if indegree[i] == 0 { add i to Queue }

while Queue is not empty
j = remove_head(Queue)
for (j,k) in E //proportional to outdegree(j)
indegree[k] = indegree[k] - 1  
LPT[k] = max(LPT[k], 1 + LPT[j])
if indegree[k] == 0 { add k to Queue }

Topological ordering with longest path 2

Summary
Dependencies are naturally modelled using DAGs

Topological ordering lists vertices without violating
dependencies

Longest path in a DAG represents minimum
number of steps to list all vertices in groups

Note: Computing the longest path with no
duplicate vertices in an arbitrary graph is not
known to have any efficient algorithm!

