DESIGN AND ANALYSIS
OF ALGORITHMS

Directed acyclic graphs (DAGS)



http://www.cmi.ac.in/~madhavan

lasks with constraints

* For a foreign trip you need to
* (Get a passport
* Buy a ticket
* Get a visa
* Buy travel insurance
* Buy foreigh exchange

* Buy gifts for your hosts




lasks with constraints

* [here are constraints

* \Without a passport, you cannot buy a ticket or
travel insurance

* You need a ticket and insurance for the visa
* You need the visa for foreign exchange

* You don’t want to invest in gifts unless the trip Is
confirmed




Goal

* Find a sequence in which to complete the tasks,
respecting the constraints




Model using graphs

* \ertices are tasks

* Edge from Task1 to Task2 if Task1 must come
before Task2

* (Getting a passport must precede buying a ticket

* (Getting a visa must precede buying foreign
exchange




Our example as a graph

Buy

Get — ticket \
Get
passport
\ Buy = VisSa

insurance \
Buy

Order of tasks should respect dependencies gifts
* Passport, Ticket, Insurance, Visa, Gift, Forex .

Buy foreign
* Passport, Insurance, Ticket, Visa, Forex, Gift  gxchange
* Passport, Ticket, Insurance, Visa, Forex, Gift

* Passport, Insurance, Ticket, Visa, Gift, Forex




Our example as a graph

Buy

Get — ticket \
Get
passport
\ Buy e visa

insurance \
Buy

Features of the graph gifts

* Directed Buy foreign
exchange

* No cycles

* Cyclic dependencies are unsatisfiable




Directed Acyclic Graphs

* G = (V,E), a directed graph
* No cycles
* No directed path from any v in V back to itself

* Such graphs are also called DAGs




lopological ordering

* Givena DAG G = (VE),V={1.2,...,n}
* Enumerate the vertices as {i1,io,...,in} SO that
* For any edge (J,k) in E,
| appears before k in the enumeration

* Also known as topological sorting




lopological ordering

* Observation

* A directed graph with cycles cannot be
topologically ordered

* Path from | to k and from k to | means
* | must come before k
* K must come before |

* Impossible!




lopological ordering

* Claim

* Every directed acyclic graph can be
topologically ordered

* Strategy
* First list vertices with no incoming edges

* Then list vertices whose incoming neighbours
are already listed




lopological ordering

* indegree(v) : number of edges into v

* outdegree(v): number of edges out of v




lopological ordering

* indegree(v) : number of edges into v

* outdegree(v): number of edges out of v

* Every dag has at least one vertex with indegree O
* Start with any v such that indegree(v) > 0

* \Walk backwards to a predecessor so long as
indegree > 0

* |f no vertex has indegree 0, within n steps we
will complete a cycle!




lopological ordering

* Pick a vertex with indegree O
* No dependencies
* Enumerate it and delete it from the graph

* \What remains is again a DAG!

* Repeat the step above

* Stop when the resulting DAG is empty







Indegree




Indegree




Indegree




Indegree




Indegree




Indegree




Indegree




Indegree




Indegree




Indegree




lopological ordering

function TopologicalOrder(G)
for 1+ = 1 ton
indegree[1] = 0
FOE )= 1 teoh
indegree[1] = 1indegree[1] + A[J][1]

tor 1 — | to R
choose j with indegree[j] = 0
enumerate j
1ndegree[]] = -1
for k= 1 ton
1t A[J]1Lk] ==
indegree[k] = indegree[k]-1




lopological ordering

* Complexity is O(n?)
* |nitializing indegree takes time O(n?)
* Loop n times to enumerate vertices
* |nside loop, identifying next vertex is O(n)

* Updating indegrees of neighbours is O(n)




lopological ordering

* Using adjacency list
* Scan lists once to compute indegrees — O(m)
* Put all indegree 0O vertices in a queue

* Enumerate head of queue and decrement
indegree of neighbours — degree(j), overall O(m)

* |f indegree(k) becomes 0, add to queue

* Overall O(n+m)




Topological ordering revisited

function TopologicalOrder(G) //Edges are in adjacency list
for @ = 1 to.n § indegree{e] = 0 |

for-i1 =1 ton
for (1,3J) 1n E //proportional to outdegree(i)
indegree[j] = indegree[j] + 1

For 1= k- to n
1f indegree[1] == 0 { add 1 to Queue }

while Queue 1s not empty
j = remove_head(Queue)
for (j,k) 1n E //proportional to outdegree(j)
indegree[k] = indegreel[k] - 1
1f indegreelk] == 0 { add k to Queue }




