
DESIGN AND ANALYSIS  
OF ALGORITHMS
Directed acyclic graphs (DAGs)

MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE
http://www.cmi.ac.in/~madhavan

NPTEL MOOC,JAN-FEB 2015
Week 3, Module 6

http://www.cmi.ac.in/~madhavan

Tasks with constraints
For a foreign trip you need to

Get a passport

Buy a ticket

Get a visa

Buy travel insurance

Buy foreign exchange

Buy gifts for your hosts

Tasks with constraints

There are constraints

Without a passport, you cannot buy a ticket or
travel insurance

You need a ticket and insurance for the visa

You need the visa for foreign exchange

You don’t want to invest in gifts unless the trip is
confirmed

Goal

Find a sequence in which to complete the tasks,
respecting the constraints

Model using graphs

Vertices are tasks

Edge from Task1 to Task2 if Task1 must come
before Task2

Getting a passport must precede buying a ticket

Getting a visa must precede buying foreign
exchange

Our example as a graph

Get
passport

Buy
ticket

Buy
insurance

Get
visa

Buy foreign
exchange

Buy
giftsOrder of tasks should respect dependencies

Passport, Ticket, Insurance, Visa, Gift, Forex

Passport, Insurance, Ticket, Visa, Forex, Gift

Passport, Ticket, Insurance, Visa, Forex, Gift

Passport, Insurance, Ticket, Visa, Gift, Forex

Our example as a graph

Get
passport

Buy
ticket

Buy
insurance

Get
visa

Buy foreign
exchange

Buy
giftsFeatures of the graph

Directed

No cycles

Cyclic dependencies are unsatisfiable

Directed Acyclic Graphs

G = (V,E), a directed graph

No cycles

No directed path from any v in V back to itself

Such graphs are also called DAGs

Topological ordering

Given a DAG G = (V,E), V = {1,2,…,n}

Enumerate the vertices as {i1,i2,…,in} so that

For any edge (j,k) in E,

	 	 j appears before k in the enumeration

Also known as topological sorting

Topological ordering
Observation

A directed graph with cycles cannot be
topologically ordered

Path from j to k and from k to j means

j must come before k

k must come before j

Impossible!

Topological ordering
Claim

Every directed acyclic graph can be
topologically ordered

Strategy

First list vertices with no incoming edges

Then list vertices whose incoming neighbours
are already listed

…

Topological ordering
indegree(v) : number of edges into v

outdegree(v): number of edges out of v

Topological ordering
indegree(v) : number of edges into v

outdegree(v): number of edges out of v

Every dag has at least one vertex with indegree 0

Start with any v such that indegree(v) > 0

Walk backwards to a predecessor so long as
indegree > 0

If no vertex has indegree 0, within n steps we
will complete a cycle!

Topological ordering

Pick a vertex with indegree 0

No dependencies

Enumerate it and delete it from the graph

What remains is again a DAG!

Repeat the step above

Stop when the resulting DAG is empty

1 2

3

4 5

6 7 8

1 2

3

4 5

6 7 8

Indegree
0 0

2

1
1

2 1 4

1 2

3

4 5

6 7 8

Indegree
0 0

2

1
1

2 1 4

2

3

4 5

6 7 8

Indegree
0

2 1 4

1

0
0

1

2

3
5

6 7 8

Indegree
0

1

1

0
1

4

1 3

3
5

6 7 8

Indegree

1

1

0

4

1

0

2

2

3

6 7 8

Indegree

1

1 4

1

0

2

1

5

6 7 8

Indegree

1

1 4 2

1

5

0

3

7 8

Indegree

1 4 2

1

5 3 6

0

8

Indegree

1 4 2 5 3 6 7

0

Indegree

1 4 2 5 3 6 7 8

Topological ordering
function TopologicalOrder(G)
for i = 1 to n
indegree[i] = 0
for j = 1 to n
indegree[i] = indegree[i] + A[j][i]

for i = 1 to n
choose j with indegree[j] = 0
enumerate j
indegree[j] = -1
for k = 1 to n
if A[j][k] == 1
indegree[k] = indegree[k]-1

Topological ordering

Complexity is O(n2)

Initializing indegree takes time O(n2)

Loop n times to enumerate vertices

Inside loop, identifying next vertex is O(n)

Updating indegrees of neighbours is O(n)

Topological ordering
Using adjacency list

Scan lists once to compute indegrees — O(m)

Put all indegree 0 vertices in a queue

Enumerate head of queue and decrement
indegree of neighbours — degree(j), overall O(m)

If indegree(k) becomes 0, add to queue

Overall O(n+m)

Topological ordering revisited
function TopologicalOrder(G) //Edges are in adjacency list
for i = 1 to n { indegree[i] = 0 }
 
for i = 1 to n
for (i,j) in E //proportional to outdegree(i)
indegree[j] = indegree[j] + 1

for i = 1 to n
if indegree[i] == 0 { add i to Queue }

while Queue is not empty
j = remove_head(Queue)
for (j,k) in E //proportional to outdegree(j)
indegree[k] = indegree[k] - 1
if indegree[k] == 0 { add k to Queue }

