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Tasks with constraints
For a foreign trip you need to


Get a passport


Buy a ticket


Get a visa


Buy travel insurance


Buy foreign exchange


Buy gifts for your hosts



Tasks with constraints

There are constraints


Without a passport, you cannot buy a ticket or 
travel insurance


You need a ticket and insurance for the visa


You need the visa for foreign exchange


You don’t want to invest in gifts unless the trip is 
confirmed



Goal

Find a sequence in which to complete the tasks, 
respecting the constraints



Model using graphs

Vertices are tasks


Edge from Task1 to Task2 if Task1 must come 
before Task2


Getting a passport must precede buying a ticket


Getting a visa must precede buying foreign 
exchange



Our example as a graph

Get 
passport

Buy 
ticket

Buy 
insurance

Get 
visa

Buy foreign 
exchange

Buy 
giftsOrder of tasks should respect dependencies 

Passport, Ticket, Insurance, Visa, Gift, Forex


Passport, Insurance, Ticket, Visa, Forex, Gift


Passport, Ticket, Insurance, Visa, Forex, Gift


Passport, Insurance, Ticket, Visa, Gift, Forex



Our example as a graph

Get 
passport

Buy 
ticket

Buy 
insurance

Get 
visa

Buy foreign 
exchange

Buy 
giftsFeatures of the graph 

Directed


No cycles


Cyclic dependencies are unsatisfiable



Directed Acyclic Graphs 

G = (V,E), a directed graph


No cycles


No directed path from any v in V back to itself


Such graphs are also called DAGs



Topological ordering

Given a DAG G = (V,E), V = {1,2,…,n}


Enumerate the vertices as {i1,i2,…,in} so that


For any edge (j,k) in E, 


	 	 j appears before k in the enumeration


Also known as topological sorting



Topological ordering
Observation


A directed graph with cycles cannot be 
topologically ordered


Path from j to k and from k to j means


j must come before k


k must come before j


Impossible!



Topological ordering
Claim


Every directed acyclic graph can be 
topologically ordered


Strategy 

First list vertices with no incoming edges


Then list vertices whose incoming neighbours 
are already listed 


…



Topological ordering
indegree(v) : number of edges into v

outdegree(v): number of edges out of v



Topological ordering
indegree(v) : number of edges into v

outdegree(v): number of edges out of v

Every dag has at least one vertex with indegree 0

Start with any v such that indegree(v) > 0

Walk backwards to a predecessor so long as 
indegree > 0

If no vertex has indegree 0, within n steps we 
will complete a cycle!



Topological ordering

Pick a vertex with indegree 0


No dependencies


Enumerate it and delete it from the graph


What remains is again a DAG!


Repeat the step above


Stop when the resulting DAG is empty
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Topological ordering
function TopologicalOrder(G)
for i = 1 to n 
indegree[i] = 0  
for j = 1 to n  
indegree[i] = indegree[i] + A[j][i]   

for i = 1 to n 
choose j with indegree[j] = 0  
enumerate j   
indegree[j] = -1   
for k = 1 to n   
if A[j][k] == 1    
indegree[k] = indegree[k]-1     



Topological ordering

Complexity is O(n2)


Initializing indegree takes time O(n2)


Loop n times to enumerate vertices


Inside loop, identifying next vertex is O(n)


Updating indegrees of neighbours is O(n)



Topological ordering
Using adjacency list


Scan lists once to compute indegrees — O(m)


Put all indegree 0 vertices in a queue


Enumerate head of queue and decrement 
indegree of neighbours — degree(j), overall O(m)


If indegree(k) becomes 0, add to queue


Overall O(n+m)



Topological ordering revisited
function TopologicalOrder(G) //Edges are in adjacency list
for i = 1 to n { indegree[i] = 0 } 
  
for i = 1 to n
for (i,j) in E //proportional to outdegree(i)  
indegree[j] = indegree[j] + 1   

 
for i = 1 to n 
if indegree[i] == 0 { add i to Queue }  

 
while Queue is not empty 
j = remove_head(Queue)  
for (j,k) in E //proportional to outdegree(j)  
indegree[k] = indegree[k] - 1   
if indegree[k] == 0 { add k to Queue }   


