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Depth first search
Start from i, visit a neighbour j


Suspend the exploration of i and explore j instead


Continue till you reach a vertex with no unexplored 
neighbours


Backtrack to nearest suspended vertex that still has an 
unexplored neighbour


Suspended vertices are stored in a stack 

Last in, first out: most recently suspended is checked 
first
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Depth first search

DFS is most natural to implement recursively


For each unvisited neighbour j of i, call DFS(j)

No need to explicitly maintain a stack


Stack is maintained implicitly by recursive calls



Depth first search
//Initialization  

for j = 1..n {visited[j] = 0; parent[j] = -1}  
 
function DFS(i) // DFS starting from vertex i

//Mark i as visited  
visited[i] = 1  

 
//Explore each neighbour of i recursively  
for each (i,j) in E  

if visited[j] == 0  
parent[j] = i  
DFS(j)
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Complexity of DFS
Each vertex marked and explored exactly once

DFS(j) need to examine all neighbours of j

In adjacency matrix, scan row j: n entries


Overall O(n2)

With adjacency list, scanning takes O(m) time 
across all vertices


Total time is O(m+n), like BFS
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Properties of DFS
Paths discovered by DFS are not shortest paths, 
unlike BFS

Why use DFS at all?

Many useful features can be extracted from recording 
the order in which DFS visited vertices

DFS numbering

Maintain a counter

Increment and record counter value when entering 
and leaving a vertex.



Depth first search
//Initialization  

for j = 1..n {visited[j] = 0; parent[j] = -1}  
count = 0  

 
function DFS(i) // DFS starting from vertex i

//Mark i as visited  
visited[i] = 1; pre[i] = count; count++  

 
//Explore each neighbours of i recursively  
for each (i,j) in E  

if visited[j] == 0  
parent[j] = i  
DFS(j)  
post[i] = count; count++



DFS numbering
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DFS numbering
pre[i] and post[i] can be used 
to find


if the graph has a cycle — 
i.e., a loop


cut vertex — removal 
disconnects the graph
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Summary
BFS and DFS are two systematic ways to explore a 
graph


Both take time linear in the size of the graph with 
adjacency lists


Recover paths by keeping parent information


BFS can compute shortest paths, in terms of 
number of edges


DFS numbering can reveal many interesting features


