DESIGN AND ANALYSIS
OF ALGORITHMS

Depth first search (DFS)



http://www.cmi.ac.in/~madhavan

Depth first search

*

*

*

Start from i, visit a neighbour |
Suspend the exploration of i and explore | instead

Continue till you reach a vertex with no unexplored
neighbours

Backtrack to nearest suspended vertex that still has an
unexplored neighbour

Suspended vertices are stored in a stack

* Last in, first out: most recently suspended is checked
first
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Depth first search

* DFS is most natural to implement recursively
* For each unvisited neighbour | of i, call DFS(j)
* No need to explicitly maintain a stack

* Stack is maintained implicitly by recursive calls




Depth first search

//Initialization

for-j =1 ..n {visitedliy)l = O; parentfj] = -1}

function DFS(1) // DFS starting from vertex i

//Mark 1 as visited
visitedial — 1

//Explore each neighbour of 1 recursively
for.edch Ci.7) 1n.E
if visited[j] ==
parent] jl =1
DFS(3)
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Complexity of DFS

* Each vertex marked and explored exactly once
* DFS(j)) need to examine all neighbours of |
* |n adjacency matrix, scan row j: n entries

* Overall O(n?)

* With adjacency list, scanning takes O(m) time
across all vertices

* [otal time is O(m+n), like BFS
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Properties of DFS

* Paths discovered by DFS are not shortest paths,
unlike BFS

* \Why use DFS at all?

* Many useful features can be extracted from recording
the order in which DFS visited vertices

* DFS numbering
* Maintain a counter

* Increment and record counter value when entering
and leaving a vertex.
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//Initialization
for 1= 1. n {visitedl 3} =07 pareatis]l = -1}
count = 0

function DFS(1) // DFS starting from vertex i

//Mark 1 as visited

visited[i] =4 prefa]

count; count++

//Explore each neighbours of 1 recursively
for edch: - (1;3)-1n E

B ovasitedl 1)
parent]l] = 1

DESET)
nost[1] = count; count++
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DFES numbering

preli] and post[i] can be used . s
to find o

* |f the graph has a cycle — e
l.e., a loop 4 <
Dy
* cut vertex — removal ,
disconnects the graph A
0 9




Summary

* BFS and DFS are two systematic ways to explore a
graph

* Both take time linear in the size of the graph with
adjacency lists

* Recover paths by keeping parent information

* BFS can compute shortest paths, in terms of
number of edges

* DFS numbering can reveal many interesting features




