
DESIGN AND ANALYSIS  
OF ALGORITHMS
Breadth first search (BFS)

MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE
http://www.cmi.ac.in/~madhavan

NPTEL MOOC,JAN-FEB 2015
Week 3, Module 3

http://www.cmi.ac.in/~madhavan

Graphs, formally
G = (V,E)

Set of vertices V

Set of edges E

E is a subset of pairs (v,v’): E ⊆ V × V

Undirected graph: (v,v’) and (v’,v) are the same edge

Directed graph:

(v,v’) is an edge from v to v’

Does not guarantee that (v’,v) is also an edge

Finding a
route

Find a
sequence of
vertices v0, v1,
…, vk such that

v0 is source

Each (vi,vi+1)
is an edge in
E

vk is target

v0

v1

v2

v3

v4

v5

Adjacency matrix
1

2

3

4

5

6 7

8 9

10

1 2 3 4 5 6 7 8 9 10
1 0 1 1 1 0 0 0 0 0 0
2 1 0 1 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0
4 1 0 0 0 1 0 0 1 0 0
5 0 0 0 1 0 1 1 0 0 0
6 0 0 0 0 1 0 1 1 1 0
7 0 0 0 0 1 1 0 0 0 0
8 0 0 0 1 0 1 0 0 1 0
9 0 0 0 0 0 1 0 1 0 1

10 0 0 0 0 0 0 0 0 1 0

Adjacency list
1

2

3

4

5

6 7

8 9

10

For each vertex, maintain a
list of its neighbours

1 2,3,4
2 1,3
3 1,2
4 1,5,8
5 4,6,7
6 5,7,8,9
7 5,6
8 4,6,9
9 6,8,10

10 9

Finding a path

Mark vertices that have been visited

Keep track of vertices whose neighbours have
already been explored

Avoid going round indefinitely in circles

Two fundamental strategies: breadth first and
depth first

Breadth first search
Explore the graph level by level

First visit vertices one step away

Then two steps away

…

Remember which vertices have been visited

Also keep track of vertices visited, but whose
neighbours are yet to be explored

Breadth first search

Recall that V = {1,2,…,n}

Array visited[i] records whether i has been visited

When a vertex is visited for the first time, add it to
a queue

Explore vertices in the order they reach the
queue

Breadth first search
Exploring a vertex i:

	 	 for each edge (i,j)  
if visited[j] == 0  

visited[j] = 1  
append j to queue

Initially, queue contains only source vertex

At each stage, explore vertex at the head of the
queue

Stop when the queue becomes empty

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Visited

Queue

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Visited

Queue

head tail

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Visited

Queue

1

1

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Visited

Queue

1

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Visited

Queue

1
1

2

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Visited

Queue

1
1

2

1

3

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Visited

Queue

1
1

2

1

3

1

4

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Visited

Queue

1
1
1

3

1

4

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Visited

Queue

1
1
1
1

4

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Visited

Queue

1
1
1
1

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Visited

Queue

1
1
1
1
1

5

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Visited

Queue

1
1
1
1
1

5

1

8

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Visited

Queue

1
1
1
1
1

1

8

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Visited

Queue

1
1
1
1
1
1

6

1

8

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Visited

Queue

1
1
1
1
1
1

6

1

8

1

7

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Visited

Queue

1
1
1
1
1
1

6

1
1

7

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Visited

Queue

1
1
1
1
1
1

6

1
1

7

1

9

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Visited

Queue

1
1
1
1
1
1

1
1

7

1

9

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Visited

Queue

1
1
1
1
1
1

1
1

1

9

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Visited

Queue

1
1
1
1
1
1

1
1

1

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Visited

Queue

1
1
1
1
1
1

1
1

1
1

10

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Visited

Queue

1
1
1
1
1
1

1
1

1
1

Breadth first search
function BFS(i) // BFS starting from vertex i

 //Initialization  
for j = 1..n {visited[j] = 0}; Q = []

 //Start the exploration at i  
visited[i] = 1; append(Q,i)  

 
//Explore each vertex in Q  
while Q is not empty  

j = extract_head(Q)  
for each (j,k) in E  

if visited[k] == 0  
visited[k] = 1; append(Q,k)

Complexity of BFS
Each vertex enters Q exactly once

If graph is connected, loop to process Q iterated n
times

For each j extracted from Q, need to examine all
neighbours of j

In adjacency matrix, scan row j: n entries

Hence, overall O(n2)

Complexity of BFS
Let m be the number of edges in E. What if m << n2?

Adjacency list: scanning neighbours of j takes time
proportional to number of neighbours (degree of j)

Across the loop, each edge (i,j) is scanned twice,
once when exploring i and again when exploring j

Overall, exploring neighbours takes time O(m)

Marking n vertices visited still takes O(n)

Overall, O(n+m)

Complexity of BFS

For graphs, O(m+n) is considered the best
possible

Need to see each edge and vertex at least once

O(m+n) is considered to be linear in the size of the
graph

Enhancements to BFS

If BFS(i) sets visited[j] = 1, we know that i and j are
connected

How do we identify a path from i to j

When we mark visited[k] = 1, remember the
neighbour from which we marked it

If exploring edge (j,k) visits k, set parent[k] = j

Breadth first search
function BFS(i) // BFS starting from vertex i

//Initialization  
for j = 1..n {visited[j] = 0; parent[j] = -1}  
Q = []

//Start the exploration at i  
visited[i] = 1; append(Q,i)  

 
//Explore each vertex in Q  
while Q is not empty  

j = extract_head(Q)  
for each (j,k) in E  

if visited[k] == 0  
visited[k] = 1; parent[k] = j; append(Q,k);

Reconstructing the path

BFS(i) sets visited[j] = 1

visited[j] = 1, so parent[j] = j’ for some j’

visited[j’] = 1, so parent[j’] = j” for some j’’

…

Eventually, trace back path to k with parent[k] = i

Recording distances

BFS can record how long the path is to each
vertex

Instead of binary array visited[], keep integer array
level[]

level[j] = -1 initially

level[j] = p means j is reached in p steps from i

Breadth first search
function BFS(i) // BFS starting from vertex i

//Initialization  
for j = 1..n {level[j] = -1; parent[j] = -1}  
Q = []

//Start the exploration at i, level[i] set to 0 
level[i] = 0; append(Q,i)  

 
//Explore each vertex in Q, increment level for each new vertex  
while Q is not empty  

j = extract_head(Q)  
for each (j,k) in E  

if level[k] == -1  
level[k] = 1+level[j]; parent[k] = j;  
append(Q,k);

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Queue

L : Level
P : Parent

L P

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Queue

head tail

L : Level
P : Parent

L P

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Queue

0

1

L : Level
P : Parent

L P
-

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Queue

0

L : Level
P : Parent

L P
-

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Queue

0
1

2

L : Level
P : Parent

L P
-
1

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Queue

0
1

2

1

3

L : Level
P : Parent

L P
-
1
1

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Queue

0
1

2

1

3

1

4

L : Level
P : Parent

L P
-
1
1
1

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Queue

0
1
1

3

1

4

L : Level
P : Parent

L P
-
1
1
1

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Queue

0
1
1
1

4

L : Level
P : Parent

L P
-
1
1
1

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Queue

0
1
1
1

L : Level
P : Parent

L P
-
1
1
1

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Queue

0
1
1
1
2

5

L : Level
P : Parent

L P
-
1
1
1
4

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Queue

0
1
1
1
2

5

2

8

L : Level
P : Parent

L P
-
1
1
1
4

4

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Queue

0
1
1
1
2

2

8

L : Level
P : Parent

L P
-
1
1
1
4

4

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Queue

0
1
1
1
2
3

6

2

8

L : Level
P : Parent

L P
-
1
1
1
4

4

5

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Queue

0
1
1
1
2
3

6

2

8

3

7

L : Level
P : Parent

L P
-
1
1
1
4

4

5
5

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Queue

0
1
1
1
2
3

6

2
3

7

L : Level
P : Parent

L P
-
1
1
1
4

4

5
5

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Queue

0
1
1
1
2
3

6

2
3

7

3

9

L : Level
P : Parent

L P
-
1
1
1
4

4

5
5

8

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Queue

0
1
1
1
2
3

2
3

7

3

9

L : Level
P : Parent

L P
-
1
1
1
4

4

5
5

8

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Queue

0
1
1
1
2
3

2
3

3

9

L : Level
P : Parent

L P
-
1
1
1
4

4

5
5

8

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Queue

0
1
1
1
2
3

2
3

3

L : Level
P : Parent

L P
-
1
1
1
4

4

5
5

8

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Queue

0
1
1
1
2
3

2
3

3
4

10

L : Level
P : Parent

L P
-
1
1
1
4

4

5
5

8
9

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Queue

0
1
1
1
2
3

2
3

3
4

L : Level
P : Parent

L P
-
1
1
1
4

4

5
5

8
9

Recording distances
BFS with level[] gives us the shortest path to each
node in terms of number of edges

In general, edges are labelled by a cost (money,
time, distance …)

Min cost path not same as fewest edges

Will look at shortest paths in weighted graphs later

BFS computes shortest paths if all costs are 1

