NPTEL MOOC, JAN-FEB 2015 Week 3, Module 1

DESIGN AND ANALYSIS OF ALGORITHMS

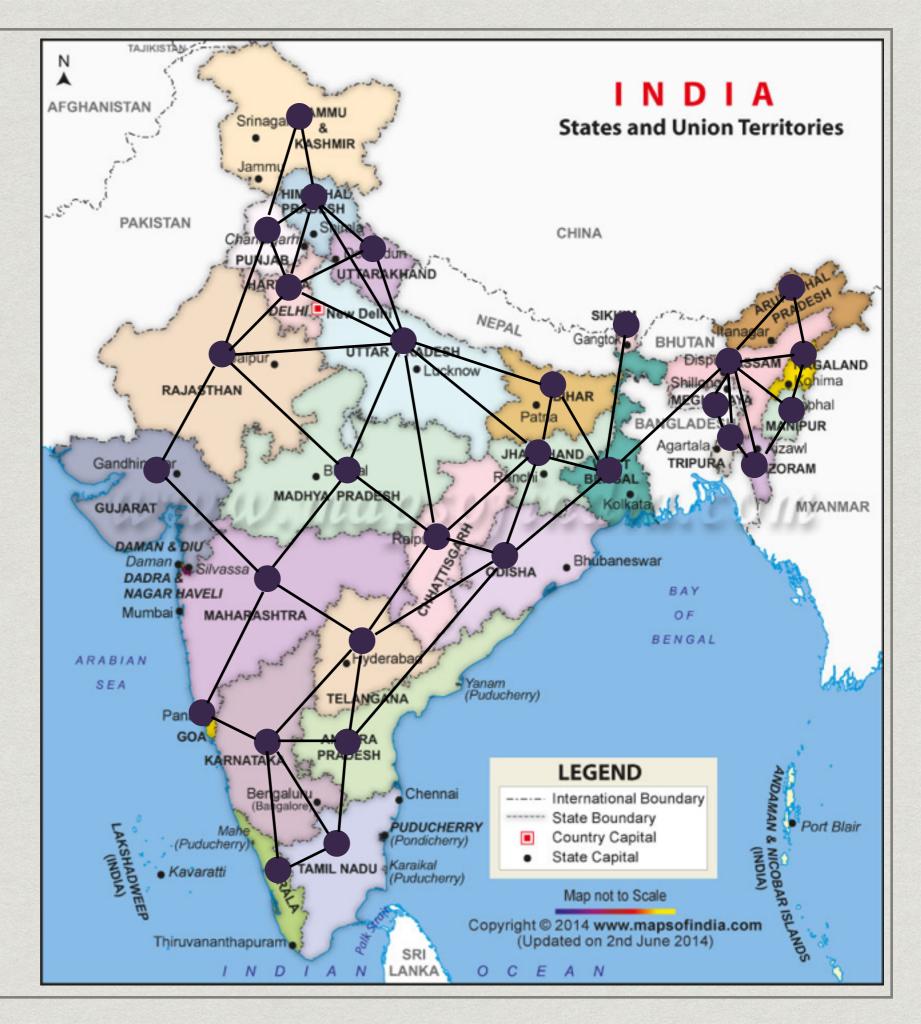
Introduction to graphs

MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE http://www.cmi.ac.in/~madhavan

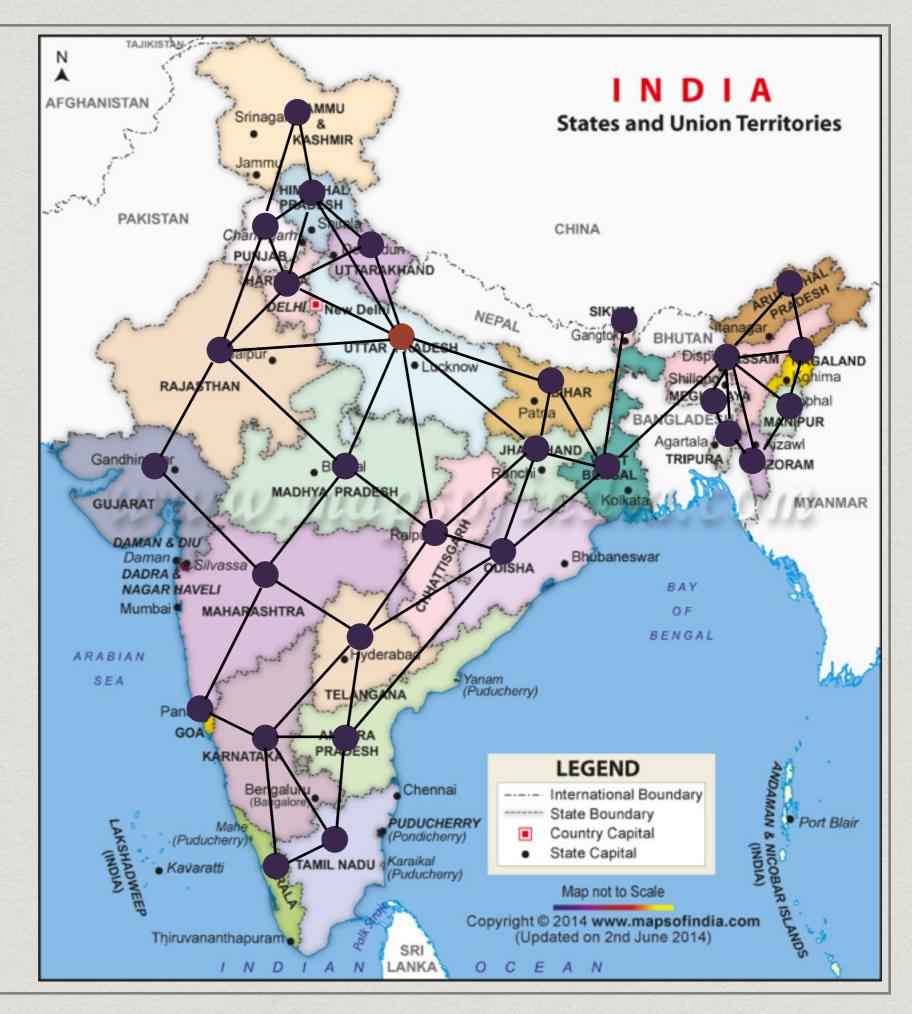
- Assign each
 state or country
 a colour
- States that
 share a border
 should be
 coloured
 differently
- * How many colours do we need?

* Mark each state

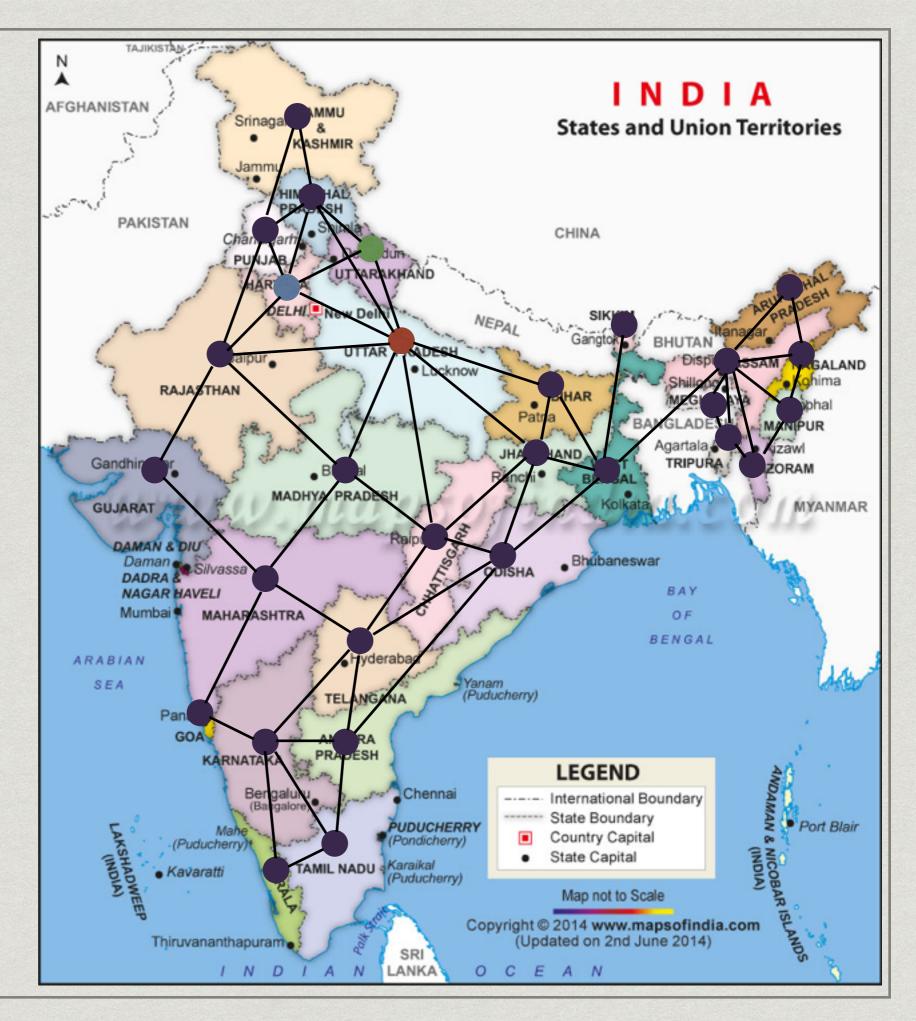
- * Mark each state
- Connect states
 that share a
 border



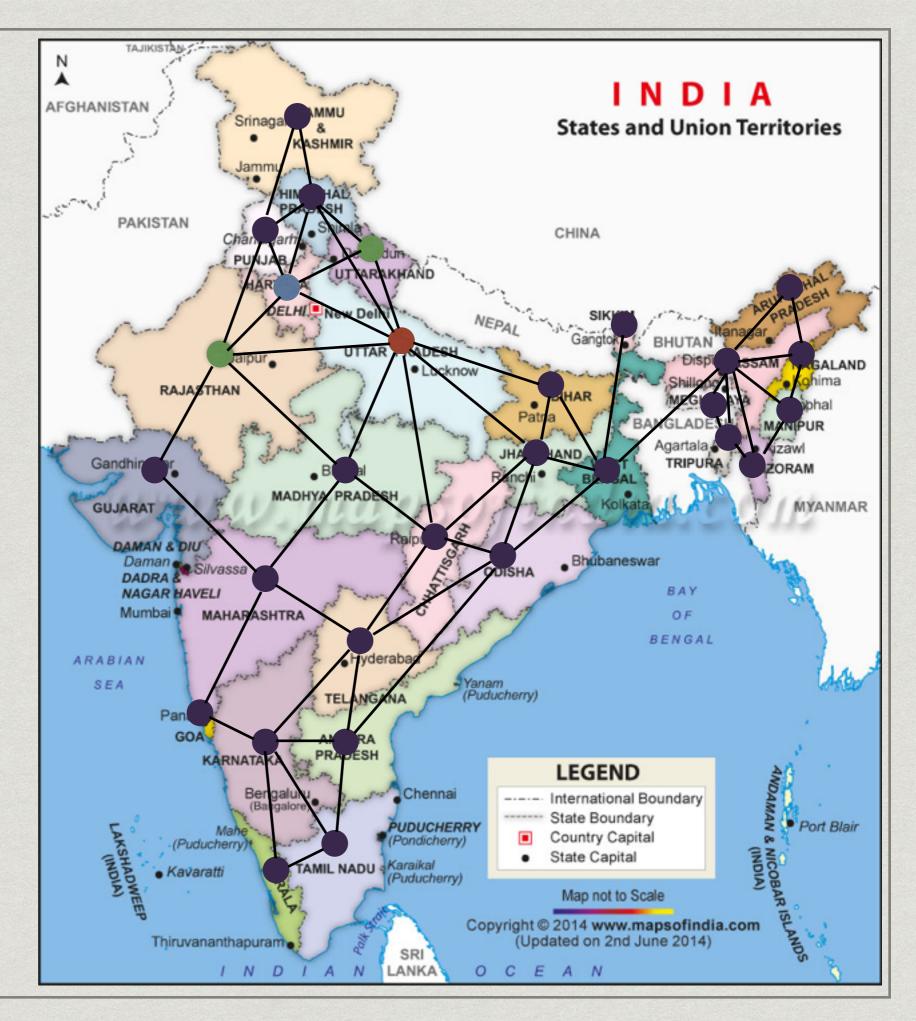
- * Mark each state
- Connect states that share a border
- Assign colours to dots so that no two connected dots have the same colour



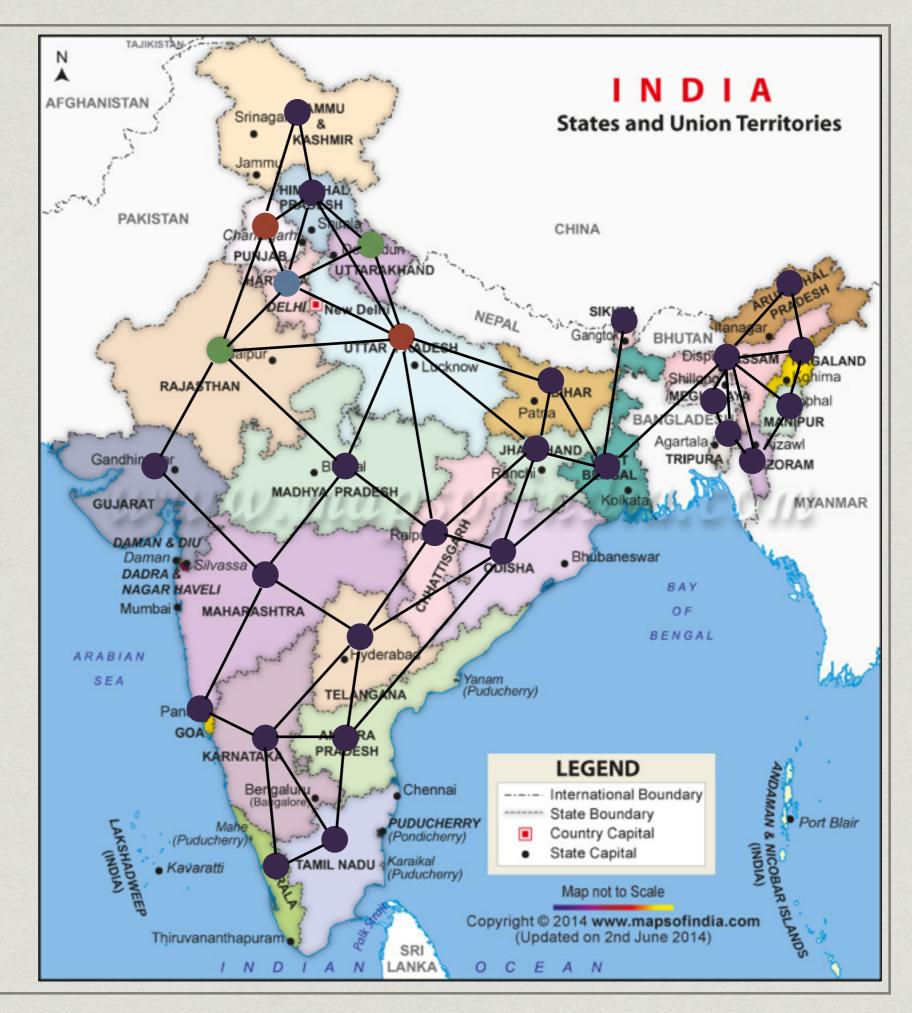
- * Mark each state
- Connect states that share a border
- Assign colours to dots so that no two connected dots have the same colour



- * Mark each state
- Connect states that share a border
- Assign colours to dots so that no two connected dots have the same colour

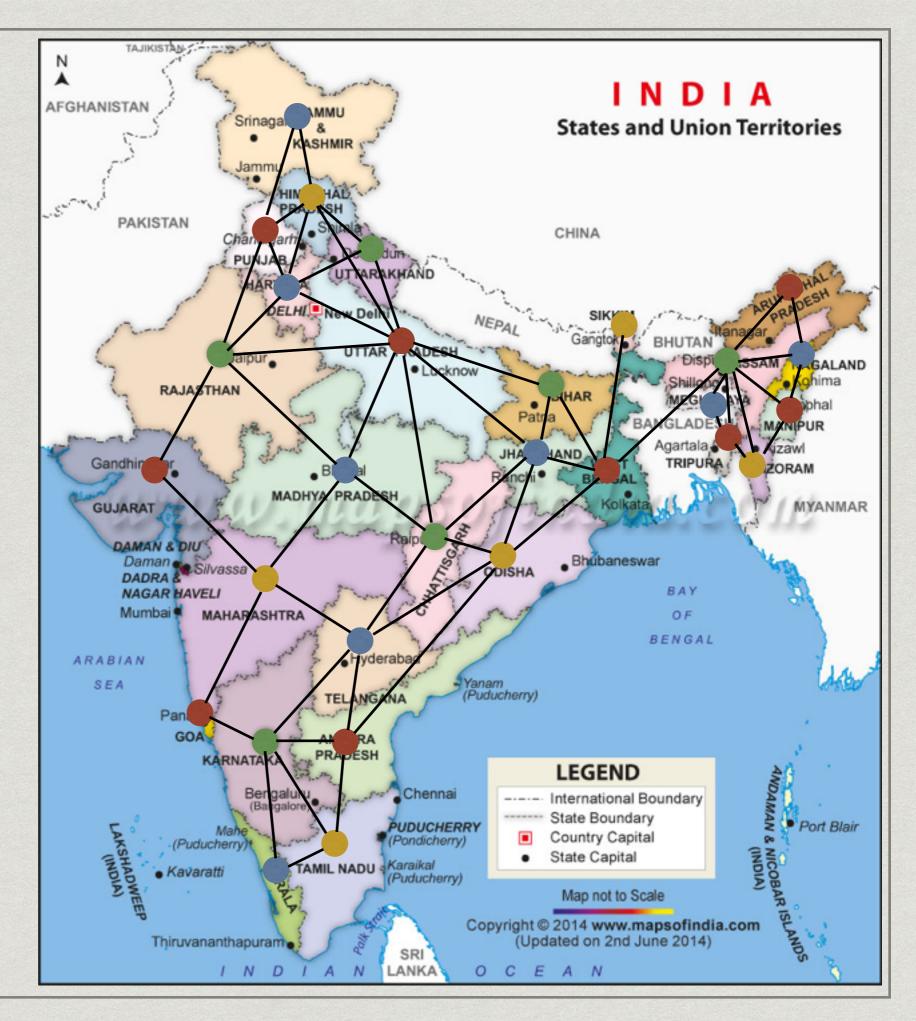


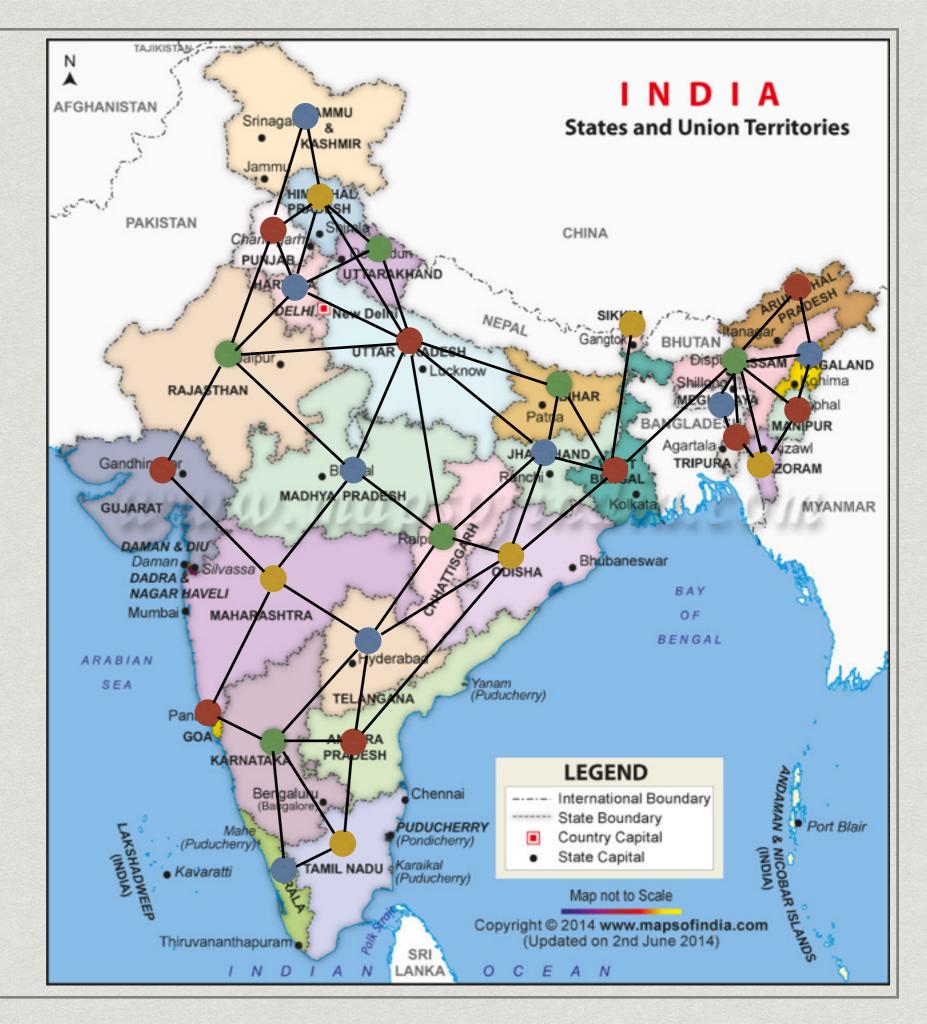
- * Mark each state
- Connect states that share a border
- Assign colours to dots so that no two connected dots have the same colour



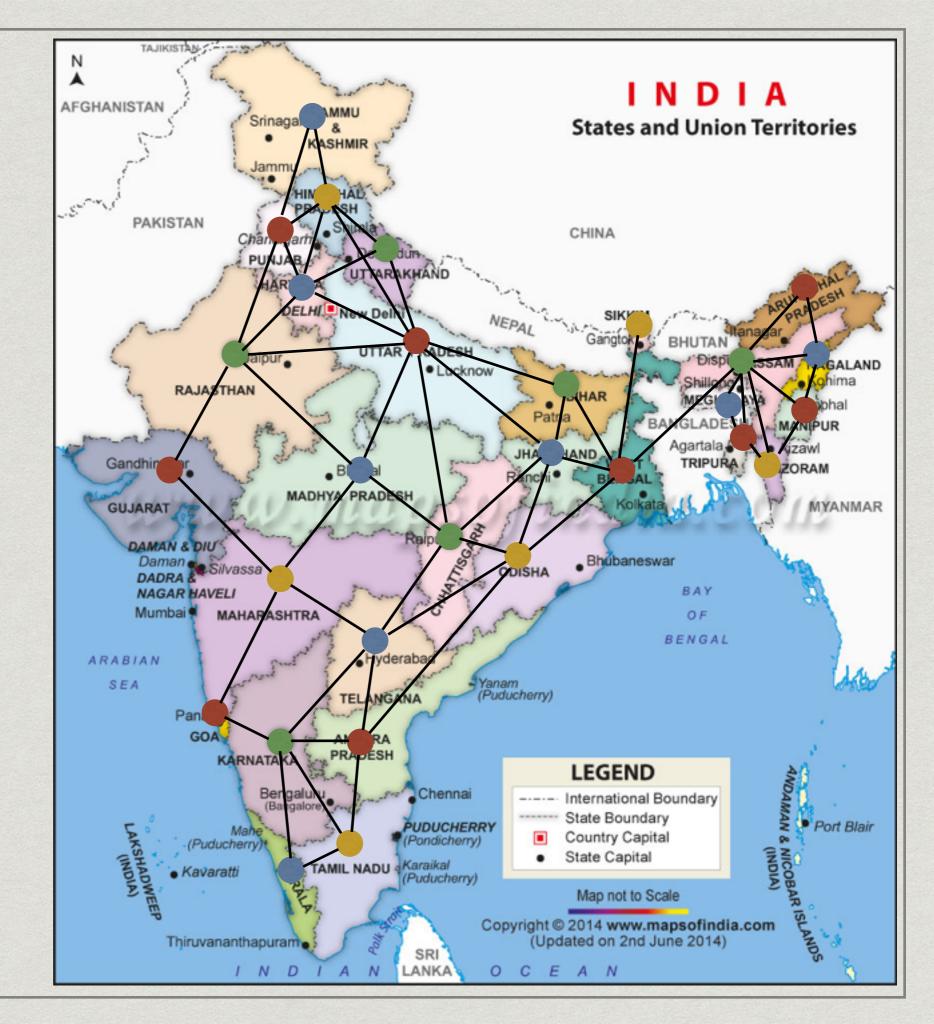
- * Mark each state
- Connect states that share a border
- Assign colours to dots so that no two connected dots have the same colour

- * Mark each state
- Connect states that share a border
- Assign colours to dots so that no two connected dots have the same colour

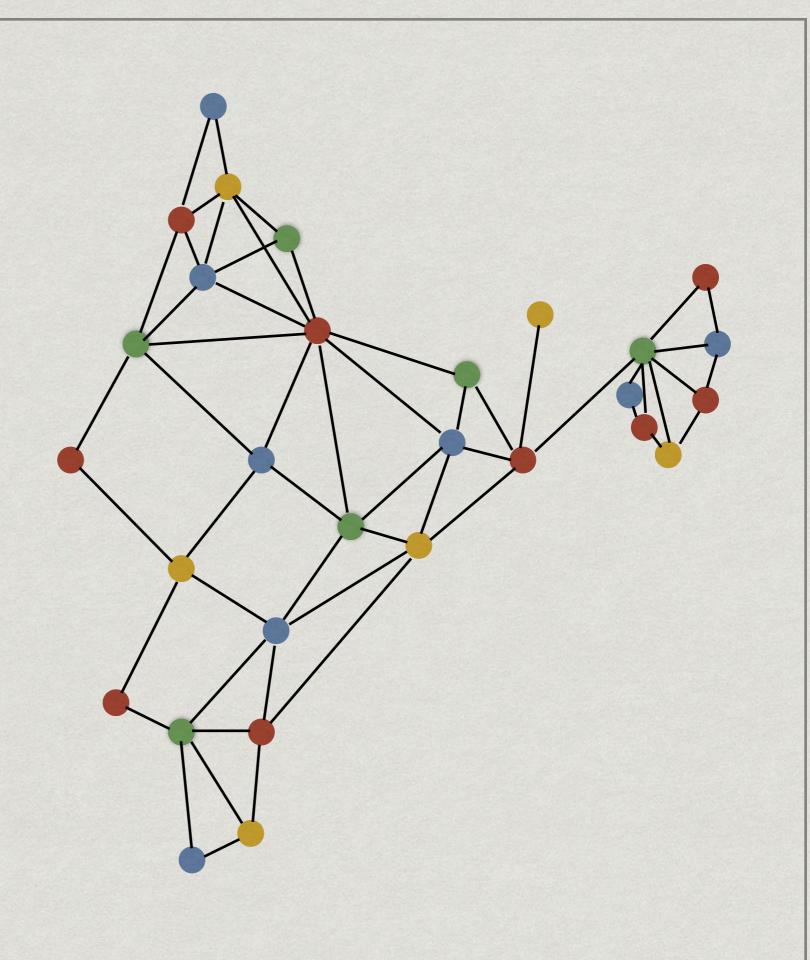




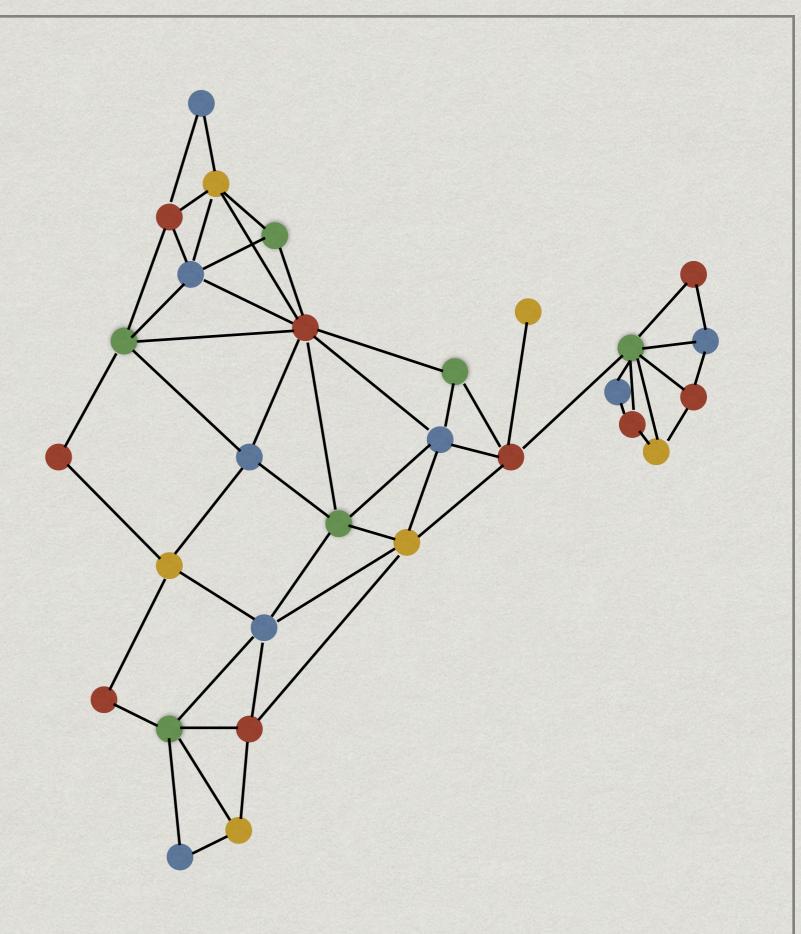
In fact, the actual map is irrelevant!



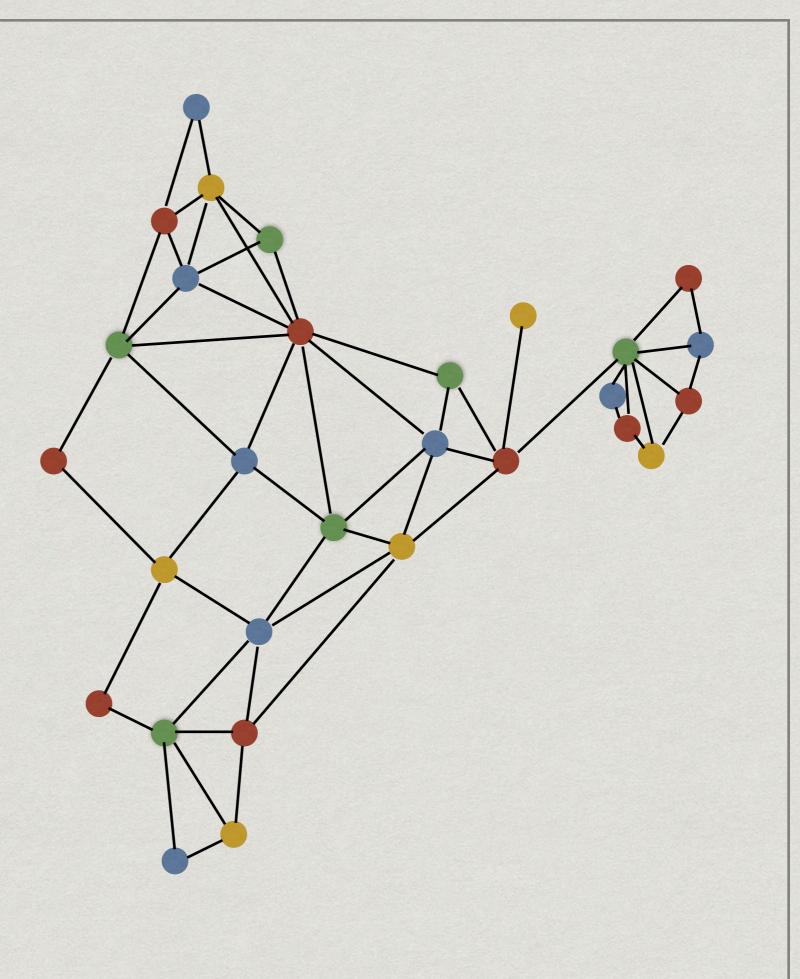
- In fact, the actual map is irrelevant!
- All we need is the underlying pattern of dots and connections



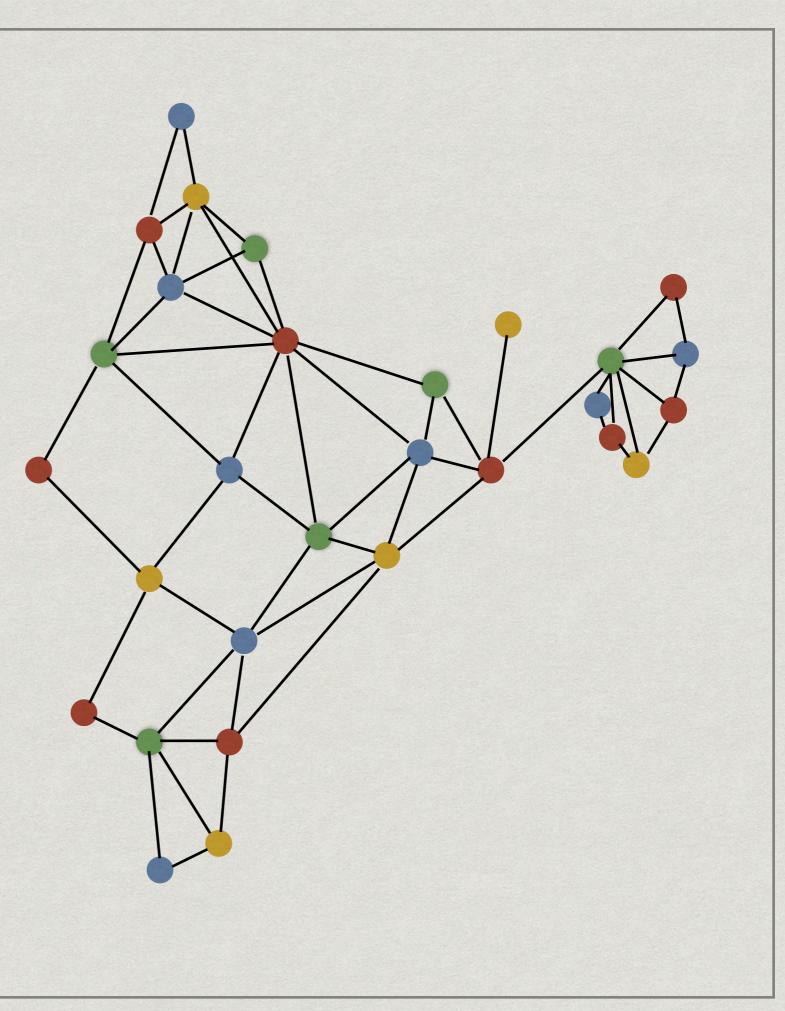
- This kind of
 diagram is
 called a graph
- Dots are nodes or vertices
 - One vertex, many vertices
- Connections are
 edges



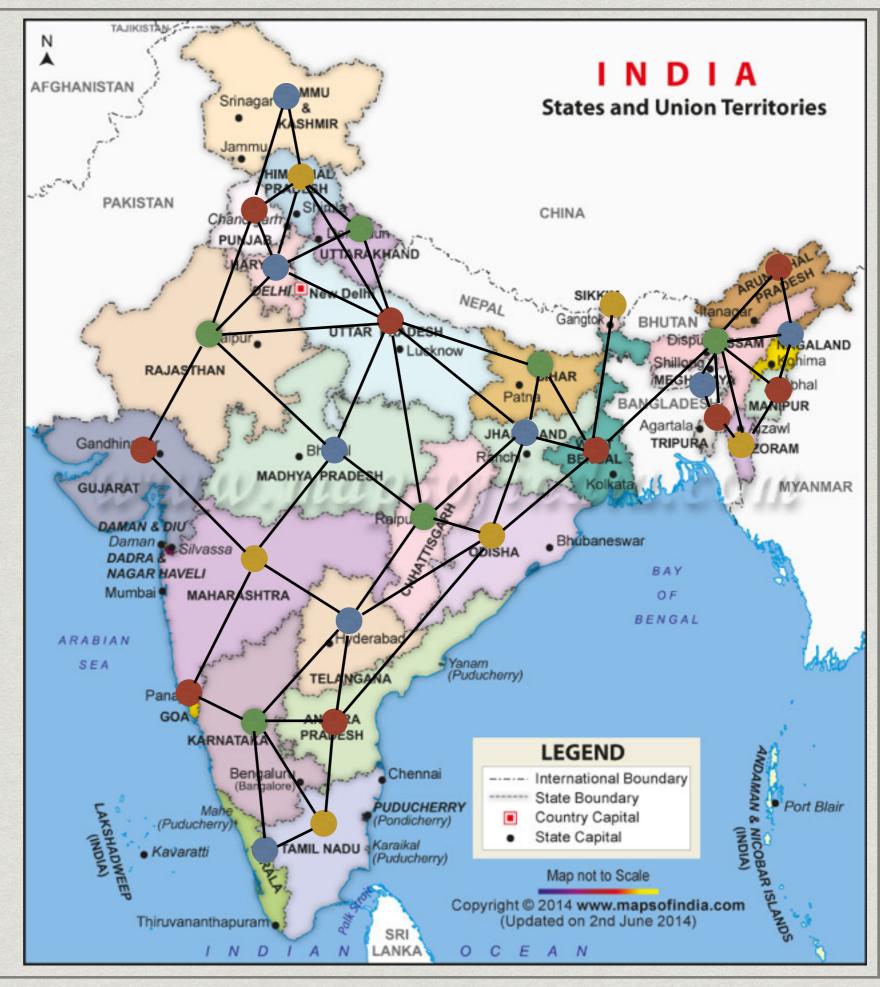
- The problem we
 have solved is called
 graph colouring
- * We used 4 colours
- In fact, 4 colours are always enough for such maps
- This is a theorem that is surprisingly hard to prove!



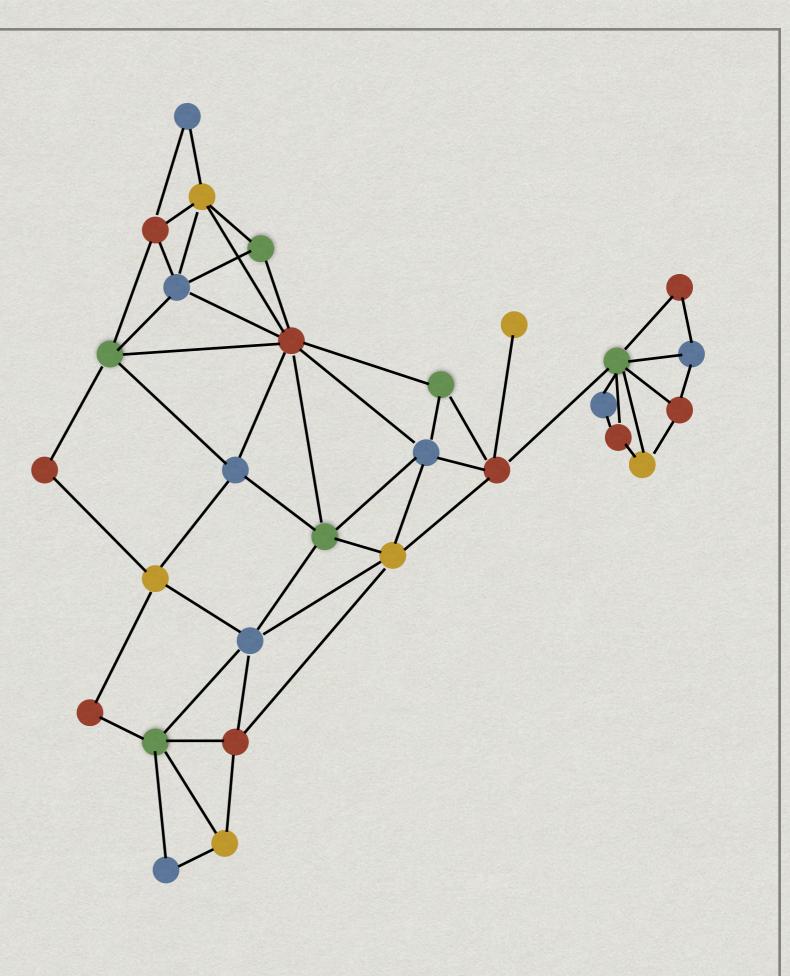
Observe that the original map used more than 4 colours



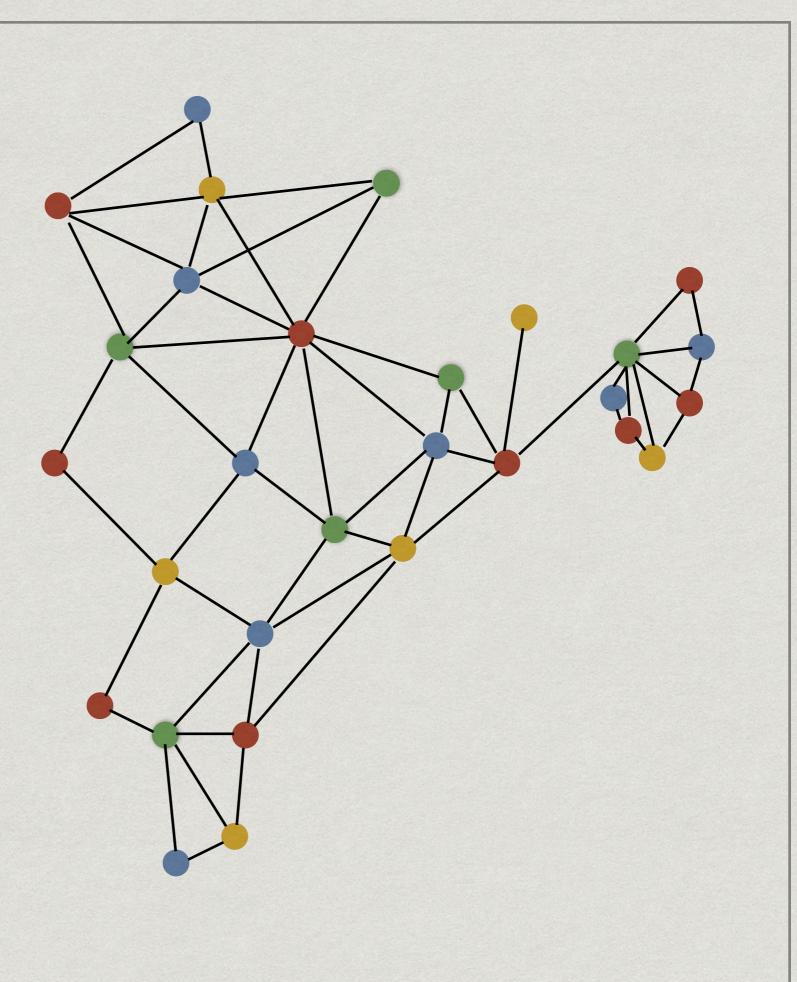
Observe that the original map used more than 4 colours



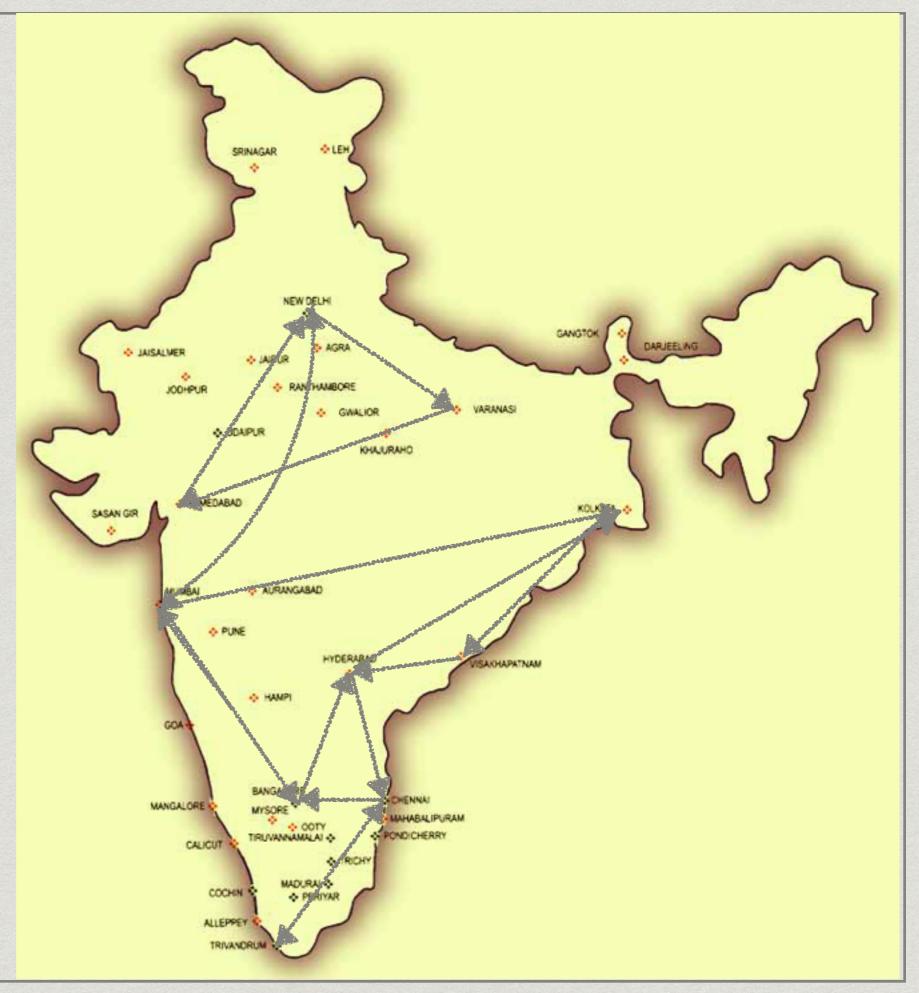
- The graph emphasizes the essential features of the problem
 - What is connected to what?



- The graph emphasizes the essential features of the problem
 - What is connected to what?
- We can distort
 this figure and the
 problem remains
 the same

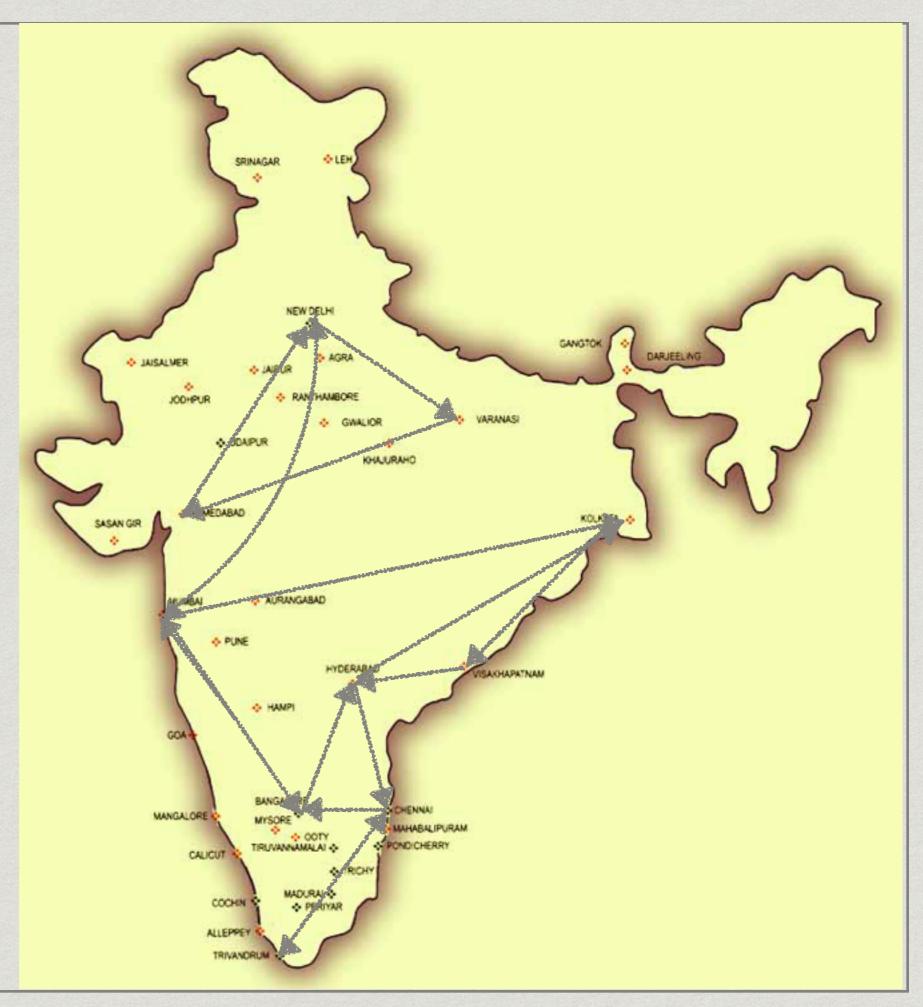


More graph problems



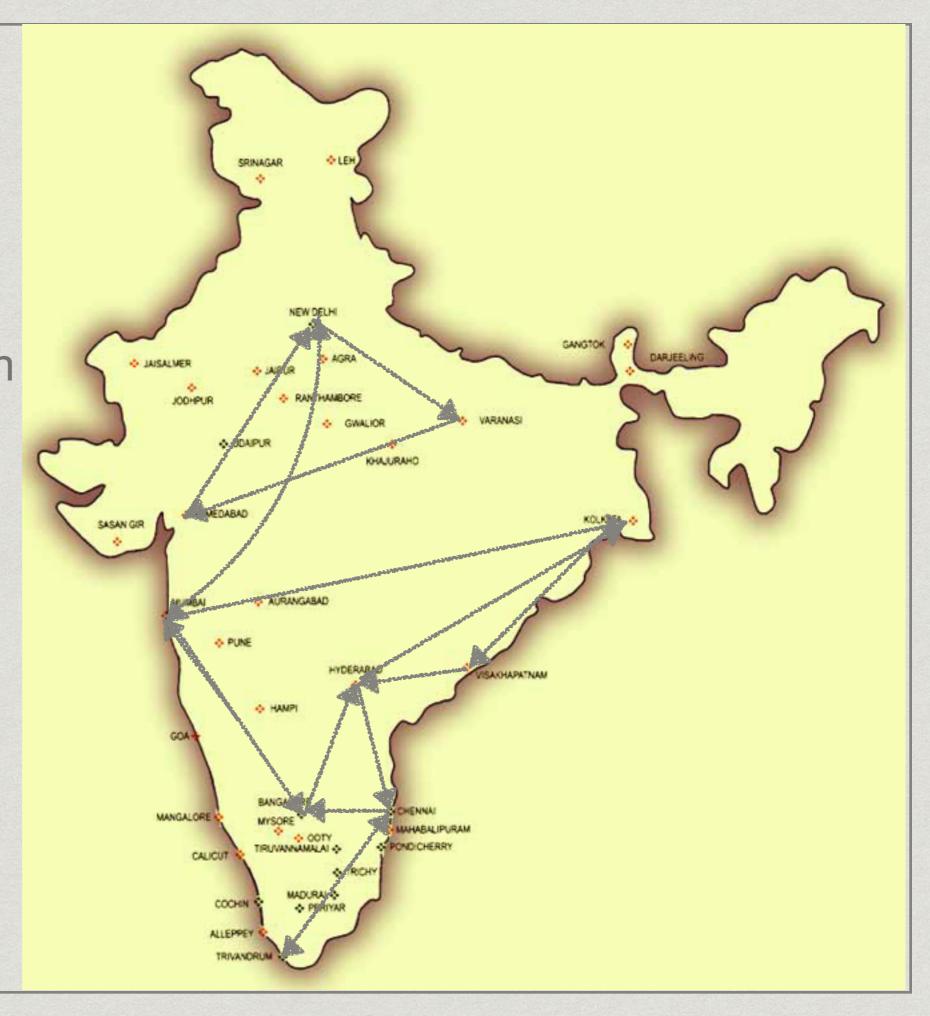
More graph problems

* Airline routing



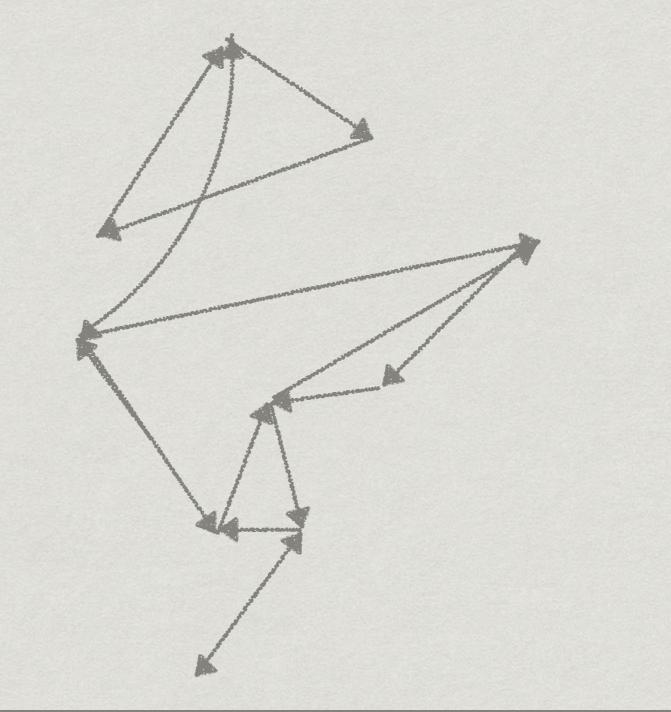
More graph problems

- * Airline routing
- Can I travel from New Delhi to Trivandrum without changing airlines?



More graph problems

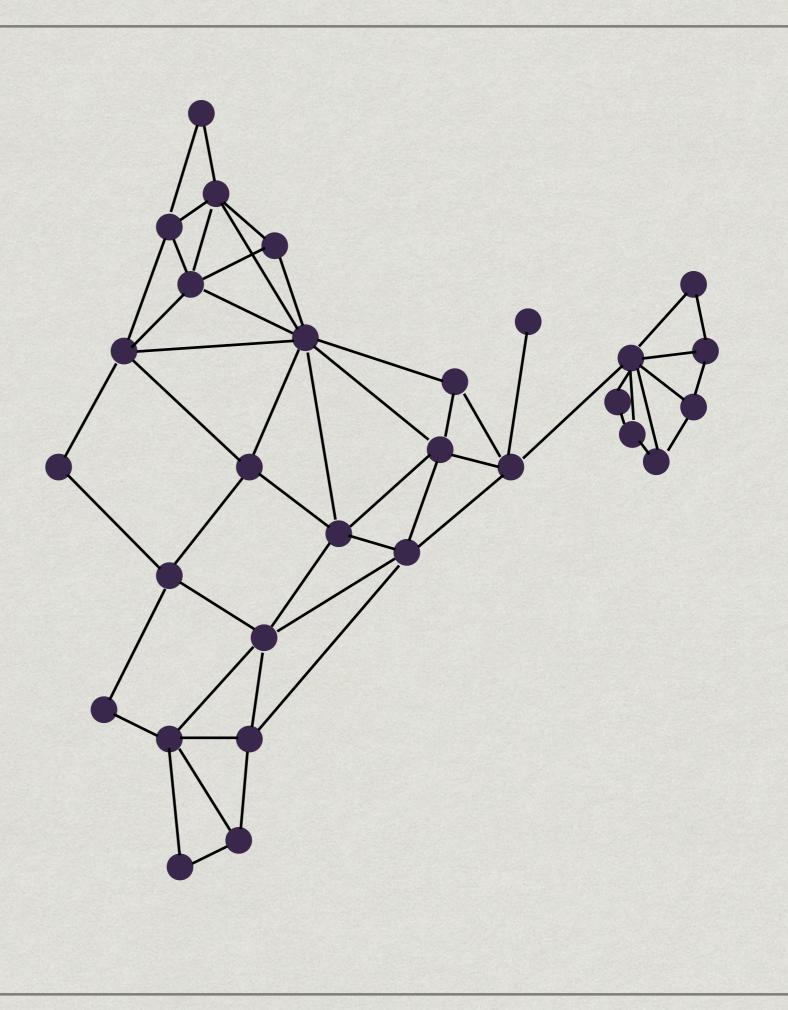
- * Airline routing
- Can I travel from New Delhi to Trivandrum without changing airlines?
- * Again, all that is important is the underlying graph



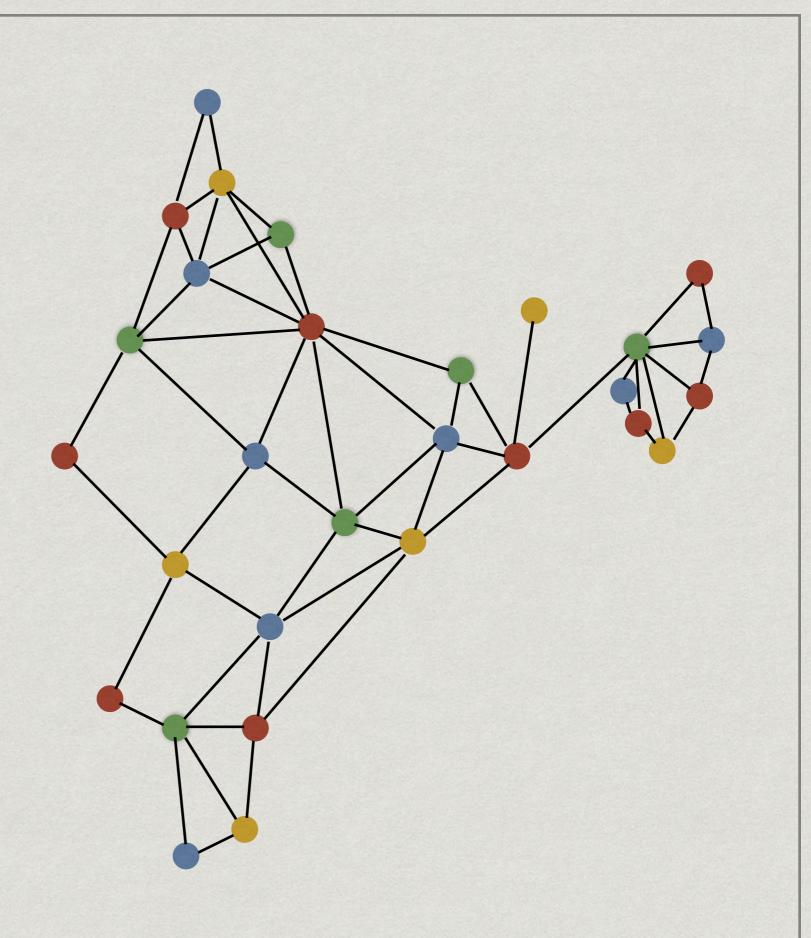
Graphs, formally

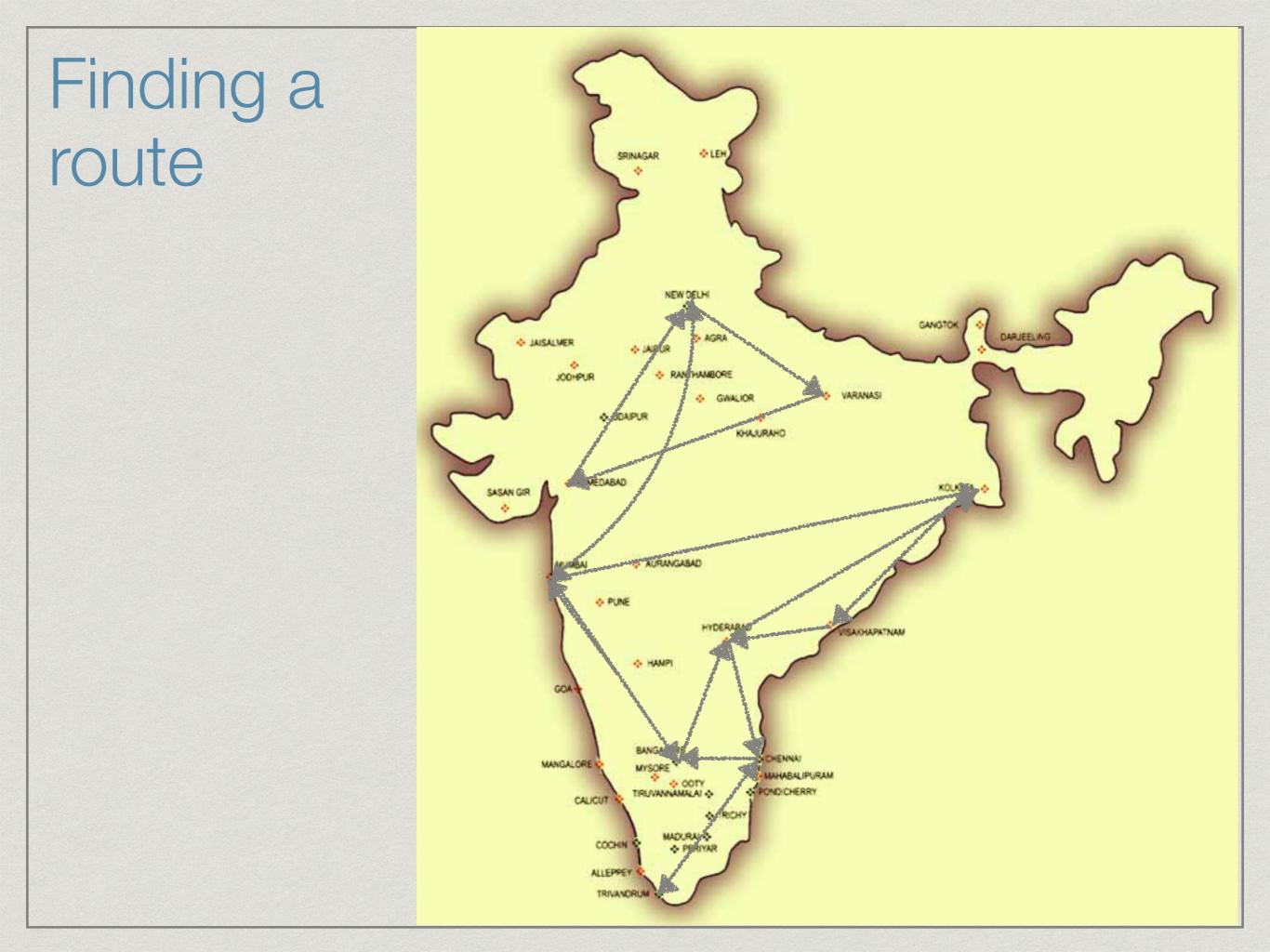
- G = (V,E)
- Set of vertices V
- Set of edges E
 - * E is a subset of pairs (v,v'): E ⊆ V × V
 - * Undirected graph: (v,v') and (v',v) are the same edge
 - * Directed graph:
 - * (v,v') is an edge from v to v'
 - * Does not guarantee that (v',v) is also an edge

Undirectedgraph



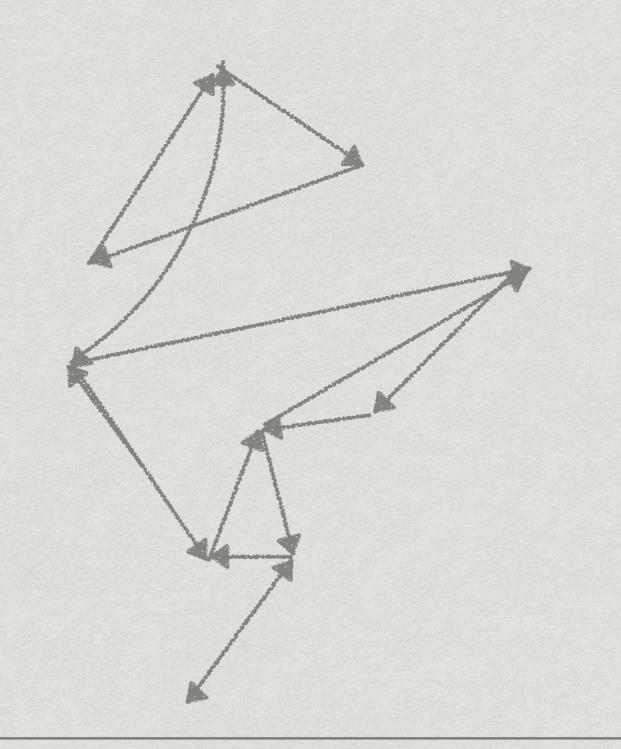
- Undirectedgraph
- Colouring C assigns each vertex v a colour C(v)
- * Legal colouring: if (v,v') is in E, then C(v) ≠ C(v')





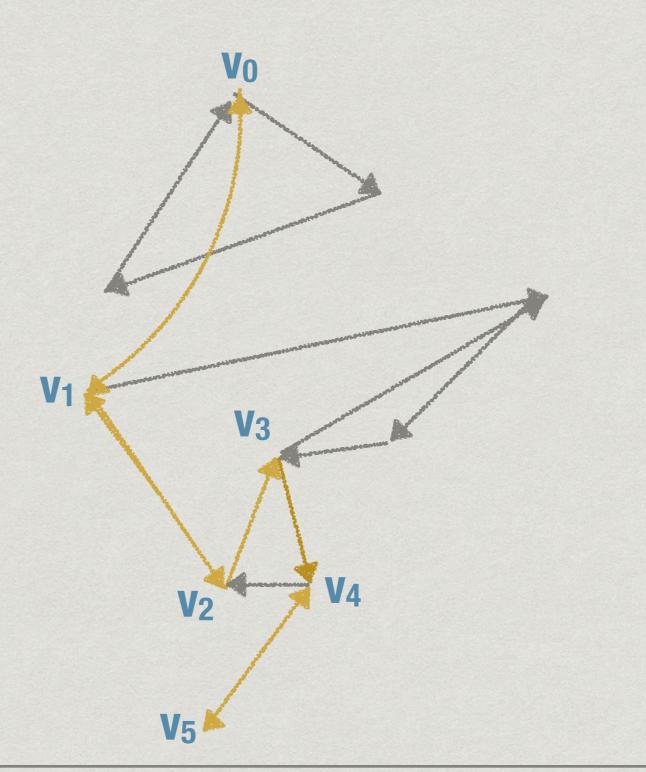
Finding a route

* Directed graph



Finding a route

- * Directed graph
- Find a sequence of vertices v₀, v₁,
 ..., v_k such that
 - * v₀ is NewDelhi
 - Each (v_i,v_{i+1}) is an edge in E
 - * v_k isTrivandrum



Finding a route

- Also makes sense for undirected graphs
- Find a sequence of vertices v₀, v₁,
 ..., v_k such that
 - * v₀ is New Delhi
 - Each (v_i,v_{i+1}) is an edge in E
 - * v_k is Trivandrum

