DESIGN AND ANALYSIS
OF ALGORITHMS

Quicksort: Analysis



http://www.cmi.ac.in/~madhavan

Quicksort

* Choose a pivot element
* Typically the first value in the array

* Partition A into lower and upper parts with respect
to pivot

* Move pivot between lower and upper partition

* Recursively sort the two partitions




Analysis of Quicksort

* Partitioning with respect to pivot takes O(n)
* |f pivot Is median

* Each partition is of size n/2

* t(n) = 2t(n/2) + n = O(n log n)

* \Worst case?




Analysis of Quicksort

Worst case

* Plvot Is maximum or minimum
* One partition is empty
* Other is size n-1

* t(n) =t(n-1) + n =t(n-2) + (Nn-1) + n
— _—1+2: +a-—0Nn)

* Already sorted array is worst case input!




Analysis of Quicksort

But -
* Average case is O(n log n)

* Sorting is a rare example where average case
can be computed

* \What does average case mean?




Quicksort: Average case

* Assume input is a permutation of {1,2,...,n}

* Actual values not important

* Only relative order matters

* Each input is equally likely (uniform probability)
* Calculate running time across all inputs

* Expected running time can be shown O(n log n)




Quicksort: randomization

* \Worst case arises because of fixed choice of pivot
* \We chose the first element

* For any fixed strategy (last element, midpoint), can
work backwards to construct O(n?) worst case

* |[nstead, choose pivot randomly
* Pick any index in [0..n-1] with uniform probabillity

* Expected running time is again O(n log n)




lterative Quicksort

* Recursive calls work on disjoint segments of array

* No recombination of results required
* Can use an explicit stack to simulate recursion

* Stack only needs to store left and right
endpoints of interval to be sorted




Quicksort in practice

* |n practice, Quicksort is very fast

* Typically the default algorithm for in-built sort
functions

* Spreadsheets

* Built in sort function in programming
languages




