
DESIGN AND ANALYSIS  
OF ALGORITHMS
Merge sort: Analysis

MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE
http://www.cmi.ac.in/~madhavan

NPTEL MOOC,JAN-FEB 2015
Week 2, Module 6

http://www.cmi.ac.in/~madhavan

Merging sorted lists
Combine two sorted lists A and B into C

If A is empty, copy B into C

If B is empty, copy A into C

Otherwise, compare first element of A and B and
move the smaller of the two into C

Repeat until all elements in A and B have been
moved

Merging
function Merge(A,m,B,n,C)  

// Merge A[0..m-1], B[0..n-1] into C[0..m+n-1]

i = 0; j = 0; k = 0;  
// Current positions in A,B,C respectively 

 
while (k < m+n)  

// Case 1: Move head of A into C  
if (j==n or A[i] <= B[j])  

C[k] = A[i]; i++; k++

// Case 2: Move head of B into C  
if (i==m or A[i] > B[j])  

C[k] = B[j]; j++; k++

Analysis of Merge
How much time does Merge take?

Merge A of size m, B of size n into C

In each iteration, we add one element to C

At most 7 basic operations per iteration

Size of C is m+n

m+n ≲ 2 max(m,n)

Hence O(max(m,n)) = O(n) if m ≈ n

Merge Sort
To sort A[0..n-1] into B[0..n-1]

If n is 1, nothing to be done

Otherwise

Sort A[0..n/2-1] into L (left)

Sort A[n/2..n-1] into R (right)

Merge L and R into B

Analysis of Merge Sort …
t(n): time taken by Merge Sort on input of size n

Assume, for simplicity, that n = 2k

t(n) = 2t(n/2) + n

Two subproblems of size n/2

Merging solutions requires time O(n/2+n/2) = O(n)

Solve the recurrence by unwinding

Analysis of Merge Sort …

Analysis of Merge Sort …
t(1) = 1

Analysis of Merge Sort …
t(1) = 1

t(n) = 2t(n/2) + n

Analysis of Merge Sort …
t(1) = 1

t(n) = 2t(n/2) + n

	 	 = 2 [2t(n/4) + n/2] + n = 22 t(n/22) + 2n

Analysis of Merge Sort …
t(1) = 1

t(n) = 2t(n/2) + n

	 	 = 2 [2t(n/4) + n/2] + n = 22 t(n/22) + 2n

	 	 = 22 [2t(n/23) + n/22] + 2n = 23 t(n/23) + 3n 
 …

Analysis of Merge Sort …
t(1) = 1

t(n) = 2t(n/2) + n

	 	 = 2 [2t(n/4) + n/2] + n = 22 t(n/22) + 2n

	 	 = 22 [2t(n/23) + n/22] + 2n = 23 t(n/23) + 3n 
 …

	 	 = 2j t(n/2j) + jn

Analysis of Merge Sort …
t(1) = 1

t(n) = 2t(n/2) + n

	 	 = 2 [2t(n/4) + n/2] + n = 22 t(n/22) + 2n

	 	 = 22 [2t(n/23) + n/22] + 2n = 23 t(n/23) + 3n 
 …

	 	 = 2j t(n/2j) + jn

When j = log n, n/2j = 1, so t(n/2j) = 1

Analysis of Merge Sort …
t(1) = 1

t(n) = 2t(n/2) + n

	 	 = 2 [2t(n/4) + n/2] + n = 22 t(n/22) + 2n

	 	 = 22 [2t(n/23) + n/22] + 2n = 23 t(n/23) + 3n 
 …

	 	 = 2j t(n/2j) + jn

When j = log n, n/2j = 1, so t(n/2j) = 1

log n means log2 n unless otherwise specified!

Analysis of Merge Sort …
t(1) = 1

t(n) = 2t(n/2) + n

	 	 = 2 [2t(n/4) + n/2] + n = 22 t(n/22) + 2n

	 	 = 22 [2t(n/23) + n/22] + 2n = 23 t(n/23) + 3n 
 …

	 	 = 2j t(n/2j) + jn

When j = log n, n/2j = 1, so t(n/2j) = 1

log n means log2 n unless otherwise specified!

t(n) = 2j t(n/2j) + jn = 2log

n + (log n) n = n + n log n = O(n log n)

O(n log n) sorting

Recall that O(n log n) is much more efficient than
O(n2)

Assuming 108 operations per second, feasible
input size goes from 10,000 to 10,000,000 
(10 million or 1 crore)

Variations on merge
Union of two sorted lists (discard duplicates)

If A[i] == B[j], copy A[i] to C[k] and increment i,j,k

Intersection of two sorted lists

If A[i] < B[j], increment i

If B[j] < A[i], increment j

If A[i] == B[j], copy A[i] to C[k] and increment i,j,k

Exercise: List difference: elements in A but not in B

Merge Sort: Shortcomings

Merging A and B creates a new array C

No obvious way to efficiently merge in place

Extra storage can be costly

Inherently recursive

Recursive call and return are expensive

Alternative approach

Extra space is required to merge

Merging happens because elements in left half
must move right and vice versa

Can we divide so that everything to the left is
smaller than everything to the right?

No need to merge!

