DESIGN AND ANALYSIS
OF ALGORITHMS

Merge sort: Analysis

http://www.cmi.ac.in/~madhavan

Merging sorted lists

Combine two sorted lists A and B into C

%

*

If A is empty, copy B into C
If B is empty, copy A into C

Otherwise, compare first element of A and B and
move the smaller of the two into C

Repeat until all elements in A and B have been
moved

Merging

function Merge(A,m,

// Merge A[0Q..m-1],

1

B,n,C)

B[@..n-1] into C[O..m+n-1]

O 3 =0 k= 0;

// Current positions in A,B,C respectively

while (k < m+n)
// Case 1: Move
it Cj=—n or A

nead of A into C

1) = Bl 7)

CEk] = AP1

// Case 2: Move
1t Ci—=m or A

s 1++; k++

nead of B i1nto C

Ll - Bl

Gikl = B

s J++; k++

Analysis of Merge

How much time does Merge take?

* Merge A of size m, B of size ninto C

* |n each iteration, we add one element to C
* At most 7 basic operations per iteration
* Size of C is m+n
* M+n = 2 max(m,n)

* Hence O(max(m,n)) = O(n) if m = n

Merge Sort

To sort A[0..n-1] into B[0..n-1]

* |f nis 1, nothing to be done

* Otherwise

* Sort A[0..n/2-1] into L (left)

* Sort A[n/2..n-1] into R (right)

* Merge L and R into B

Analysis of Merge Sort ...

* 1(n): time taken by Merge Sort on input of size n
* Assume, for simplicity, that n = 2¥
* t(n) = 2t(n/2) + n
* Two subproblems of size n/2
* Merging solutions requires time O(n/2+n/2) = O(n)

* Solve the recurrence by unwinding

Analysis of Merge Sort ...

Analysis of Merge Sort ...

* t(1) =1

Analysis of Merge Sort ...

* t(1) =1
* t(n) = 2t(n/2) + n

Analysis of Merge Sort ...

% 1(1) = |
* t(n) = 2t(n/2) + n
=2 [2t(n/4) + n/2] + n = 2°t(n/2°) + 2n

Analysis of Merge Sort ...

% 1(1) = |
* t(n) = 2t(n/2) + n
=2 [2t(n/4) + n/2] + n = 2°t(n/2°) + 2n
= 2°[2t(n/2°%) + n/2°] + 2n = 2°t(n/2°) + 3n

Analysis of Merge Sort ...

% 1(1) = |
* t(n) = 2t(n/2) + n
=2 [2t(n/4) + n/2] + n = 2°t(n/2°) + 2n
= 2°[2t(n/2°%) + n/2°] + 2n = 2°t(n/2°) + 3n

= 2't(n/2)) + jn

Analysis of Merge Sort ...

% 1(1) = |
* t(n) = 2t(n/2) + n
=2 [2t(n/4) + n/2] + n = 2°t(n/2°) + 2n
= 2°[2t(n/2°%) + n/2°] + 2n = 2°t(n/2°) + 3n

= 2't(n/2)) + jn
* When j=logn, n/2'=1, so t(n/2)) = 1

Analysis of Merge Sort ...

% 1(1) = |
* t(n) = 2t(n/2) + n
=2 [2t(n/4) + n/2] + n = 2°t(n/2°) + 2n
= 2°[2t(n/2°%) + n/2°] + 2n = 2°t(n/2°) + 3n

= 2't(n/2)) + jn
* When j=logn, n/2'=1, so t(n/2)) = 1

* |og n means log> n unless otherwise specified!

Analysis of Merge Sort ...

% 1(1) = |
* t(n) = 2t(n/2) + n
=2 [2t(n/4) + n/2] + n = 2°t(n/2°) + 2n
= 2°[2t(n/2°%) + n/2°] + 2n = 2°t(n/2°) + 3n

= 2't(n/2)) + jn
* When j=logn, n/2'=1, so t(n/2)) = 1
* |og n means log> n unless otherwise specified!

* t(n) = 2't(n/2) + jn =2"°" + logn) n = n + n logn = O(n log n)

O(n log n) sorting

* Recall that O(n log n) is much more efficient than
O(n?)

* Assuming 108 operations per second, feasible
iInput size goes from 10,000 to 10,000,000
(10 million or 1 crore)

Variations on merge

* Union of two sorted lists (discard duplicates)

* |f Ali] == BJj], copy AJi] to C[k] and increment i,j,k
* |ntersection of two sorted lists

* |f Ali] < BJj], increment i

* |f Bl[j] < Ali], increment |

* |f Ali] == BJj], copy AJi] to C[k] and increment i,j,k

* EXxercise: List difference: elements in A but not in B

Merge Sort: Shortcomings

* Merging A and B creates a new array C
* No obvious way to efficiently merge in place
* EXxtra storage can be costly

* Inherently recursive

* Recursive call and return are expensive

Alternative approach

* EXxtra space is required to merge

* Merging happens because elements in left half
must move right and vice versa

* Can we divide so that everything to the left is
smaller than everything to the right?

* No need to merge!

