
DESIGN AND ANALYSIS  
OF ALGORITHMS
Insertion Sort

MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE
http://www.cmi.ac.in/~madhavan

NPTEL MOOC,JAN-FEB 2015
Week 2, Module 4

http://www.cmi.ac.in/~madhavan

Sorting
Searching for a value

Unsorted array — linear scan, O(n)

Sorted array — binary search, O(log n)

Other advantages of sorting

Finding median value: midpoint of sorted list

Checking for duplicates

Building a frequency table of values

How to sort?

You are a Teaching Assistant for a course

The instructor gives you a stack of exam answer
papers with marks, ordered randomly

Your task is to arrange them in descending order

Strategy 2
First paper: put in a new stack

Second paper:

Lower marks than first? Place below first paper 
Higher marks than first? Place above first paper

Third paper

Insert into the correct position with respect to first
two papers

Do this for each subsequent paper: 
insert into correct position in new sorted stack

Strategy 2 …

74 32 89 55 21 64

Strategy 2 …

74 32 89 55 21 64

74

Strategy 2 …

74 32 89 55 21 64

32 74

Strategy 2 …

74 32 89 55 21 64

32 74 89

Strategy 2 …

74 32 89 55 21 64

32 55 74 89

Strategy 2 …

74 32 89 55 21 64

21 32 55 74 89

Strategy 2 …

74 32 89 55 21 64

21 32 55 64 74 89

Strategy 2 …

Insertion Sort

Start building a sorted sequence with one element

Pick up next unsorted element and insert it into its
correct place in the already sorted sequence

Insertion Sort
InsertionSort(A,n) // Sort A of size n

for (pos = 1; pos < n; pos++)  
// Build longer and longer sorted segments  
// In each iteration A[0]..A[pos-1] is already sorted

// Move first element after sorted segment left  
// till it is in the correct place  
nextpos = pos  
while (nextpos > 0 &&  

 A[nextpos] < A[nextpos-1])  
swap(A,nextpos,nextpos-1)  
nextpos = nextpos-1

Insertion Sort

74 32 89 55 21 64

Insertion Sort

74 32 89 55 21 64

Insertion Sort

32 74 89 55 21 64

Insertion Sort

32 74 89 55 21 64

Insertion Sort

32 74 55 89 21 64

Insertion Sort

32 55 74 89 21 64

Insertion Sort

32 55 74 21 89 64

Insertion Sort

32 55 21 74 89 64

Insertion Sort

32 21 55 74 89 64

Insertion Sort

21 32 55 74 89 64

Insertion Sort

21 32 55 74 64 89

Insertion Sort

21 32 55 64 74 89

Analysis of Insertion Sort

Inserting a new value in sorted segment of length
k requires upto k steps in the worst case

In each iteration, sorted segment in which to insert
increased by 1

t(n) = 1 + 2 + … + n-1 = n(n-1)/2 = O(n2)

Recursive formulation

To sort A[0..n-1]

Recursively sort A[0..n-2]

Insert A[n-1] into A[0..n-2]

Base case: n = 1

Insertion Sort, recursive
InsertionSort(A,k) // Sort A[0..k-1]

 if (k == 1)  
 return;

 InsertionSort(A,k-1);  
 Insert(A,k-1);  
 return;

Insert(A,j) // Insert A[j] into A[0..j-1]

 pos = j;  
 while (pos > 0 && A[pos] < A[pos-1])  
 swap(A,pos,pos-1);  
 pos = pos-1;

Recurrence
t(n), time to run insertion sort on length n

Time t(n-1) to sort segment A[0] to A[n-2]

n-1 steps to insert A[n-1] in sorted segment

Recurrence

t(n) = n-1 + t(n-1) 
t(1) = 1

t(n) = n-1 + t(n-1) = n-1 + ((n-2) + t(n-2)) = … = 
(n-1) + (n-2) + … + 1 = n(n-1)/2 = O(n2)

O(n2) sorting algorithms
Selection sort and insertion sort are both O(n2)

So is bubble sort, which we will not discuss here

O(n2) sorting is infeasible for n over 10000

Among O(n2) sorts, insertion sort is usually better
than selection sort and both are better than
bubble sort

What happens when we apply insertion sort to
an already sorted list?

