DESIGN AND ANALYSIS
OF ALGORITHMS

Searching in an array



http://www.cmi.ac.in/~madhavan

Search problem

* |s a value K present in a collection A?
* Does the structure of A matter?

* Array vs list

* Does the organization of the information matter?

* \alues sorted/unsorted




The unsorted case

function search(A,K)
L= )

while 1 < nh and Al1] != K do
1 = 151

it 2N
retupn 1:
else

return -1;




Worst case

* Need to scan the entire sequence A
* O(n) time for input sequence of size A

* Does not matter if A is array or list




Search a sorted sequence

* What if A is sorted?
* Compare K with midpoint of A
* |f midpoint is K, the value is found
* |f K < midpoint, search left half of A
* |f K> midpoint, search right half of A

* Binary search




Binary search ...

bsearch(K,A,1,r) // A sorted, search for K in A[l..r-1]
1f (r - 1 == 0) return(false)
mid = (1 + r) div 2 // 1integer division
1f (K == A[mid]) return (true)
1f (K < A[mid])
return (bsearch(K,A,1,mid))
else

return (bsearch(K,A,mid+1,r))




Binary Search ...

* How long does this take?
* Each step halves the interval to search

* For an interval of size 0, the answer is
Immediate

* T(n): time to search in an array of size n
% Fi0) = |
* T(n) =1 + T(n/2)




Binary Search ...

* T(n): time to search in a list of size n
* T(0) =1
* T(n) =1 + T(n/2)

* Unwind the recurrence

* TN)=1+T(N/2)=1+1+T(n/2°) = ...
=1+1+...+1+T(n/2%
=1+1+...+1+T(n/2"°") = O(log n)




Binary Search ...

* \Works only for arrays
* Need to be look up Ali] in constant time

* By seeing only a small fraction of the sequence,
we can conclude that an element is not present!




