
DESIGN AND ANALYSIS  
OF ALGORITHMS

MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE
http://www.cmi.ac.in/~madhavan

NPTEL MOOC,JAN-FEB 2015
Week 1, Module 8

http://www.cmi.ac.in/~madhavan

Calculating complexity

Iterative programs

Recursive programs

Example 1
Maximum value in an array

function maxElement(A):
 maxval = A[0]
 for i = 1 to n-1:
 if A[i] > maxval:  
 maxval = A[i]
 return(maxval)

Example 2
Check if all elements in an array are distinct

function noDuplicates(A):
 for i = 0 to n-1:
 for j = i+1 to n-1:
 if A[i] == A[j]:
 return(False)
 return(True)

Example 3
Matrix multiplication

function matrixMultiply(A,B):
 for i = 0 to n-1:
 for j = 0 to n-1:
 C[i][j] = 0
 for k = 0 to n-1:
 C[i][j] = C[i][j] + A[i][k]*B[k][j]
 return(C)

Example 4
Number of bits in binary representation of n

function numberOfBits(n):
 count = 1
 while n > 1:
 count = count + 1
 n = n div 2
 return(count)

Example 5
Towers of Hanoi

Three pegs,  
A, B, C

Move n disks  
from A to B

Never put a larger disk above a smaller one

C is transit peg 
 

Example 5

Recursive solution

Move n-1 disks from A to C, using B as transit peg

Move largest disk from A to B

Move n-1 disks from C to B, using A as transit peg

Example 5
Solve recurrence by repeated substitution

M(n) = number of moves to transfer n disks

M(n) = M(n-1) + 1 + M(n-1)

M(1) = 1

Recurrence

Recursive expression for M(n)

Example 5
Complexity

M(n) = 2M(n-1) + 1 
 = 2(2M(n-2)+1) + 1 = 22M(n-2) + (2+1) 
 = 22(2M(n-3)+1) + 2 + 1 = 23M(n-3) + (4+2+1) 
 = … 
 = 2kM(n-k) + (2k - 1) 
 = … 
 = 2n-1M(1) + (2n-1 - 1) 
 = 2n-1 + 2n-1 - 1 =  
 = 2n - 1

Summary
Iterative programs

Focus on loops

Recursive programs

Write and solve a recurrence

Will see more complicated examples

Need to be clear about “accounting” for basic
operations

