NPTEL MOOC, JAN-FEB 2015 Week 1, Module 7

DESIGN AND ANALYSIS OF ALGORITHMS

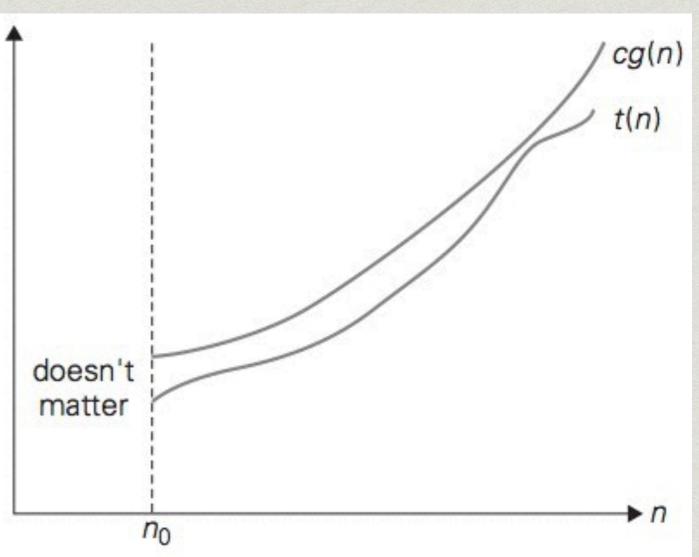
MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE http://www.cmi.ac.in/~madhavan

Comparing time efficiency

- We measure time efficiency only upto an order of magnitude
 - Ignore constants
- * How do we compare functions with respect to orders of magnitude?

Upper bounds, "big O"

- * t(n) is said to be O(g(n)) if we can find suitable constants c and n_0 so that cg(n) is an upper bound for t(n) for n beyond n_0
 - * $t(n) \le cg(n)$ for every $n \ge n_0$



Examples: Big O

- * $100n + 5 \text{ is } O(n^2)$
 - * 100n + 5
 - * \leq 100n + n, for n \geq 5
 - * = $101n \le 101n^2$, so $n_0 = 5$, c = 101
- * Alternatively
 - * 100n + 5
 - * \leq 100n + 5n, for n \geq 1
 - * = $105n \le 105n^2$, so $n_0 = 1$, c = 105
- * n₀ and c are not unique!
- * Of course, by the same argument, 100n+5 is also O(n)

Examples: Big O

* $100n^2 + 20n + 5$ is $O(n^2)$ * $100n^2 + 20n + 5$ * $\le 100n^2 + 20n^2 + 5n^2$, for $n \ge 1$ * $\le 125n^2$ * $n_0 = 1, c = 125$

- * What matters is the highest term
 - * 20n + 5 dominated by $100n^2$

Examples: Big O

* n^3 is not O(n^2)

★ No matter what c we choose, cn² will be dominated by n³ for n ≥ c

Useful properties

* If

- * f1(n) is O(g1(n))
- * f₂(n) is O(g₂(n))
- * then $f_1(n) + f_2(n)$ is $O(max(g_1(n), g_2(n)))$

Proof

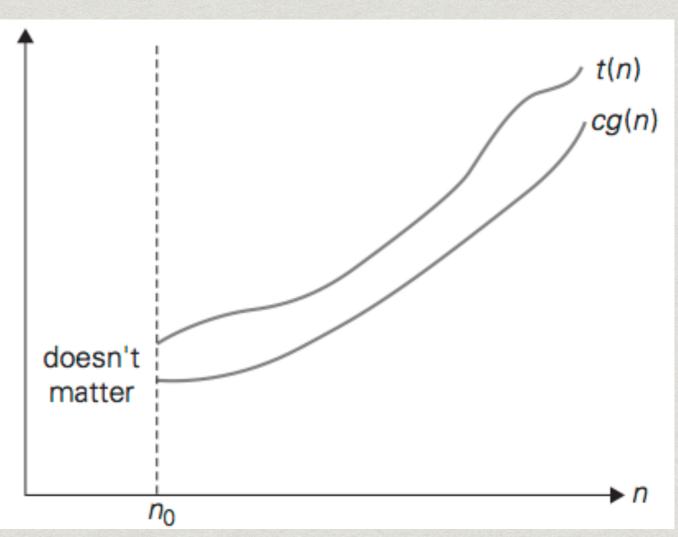
* $f_1(n) \le c_1 g_1(n)$ for all $n > n_1$ * $f_2(n) \le c_2 g_2(n)$ for all $n > n_2$

Why is this important?

- * Algorithm has two phases
 * Phase A takes time O(g_A(n))
 * Phase B takes time O(g_B(n))
- * Algorithm as a whole takes time
 * max(O(g_A(n)),O(g_B(n)))
- * For an algorithm with many phases, least efficient phase is an upper bound for the whole algorithm

Lower bounds, Ω (omega)

- * t(n) is said to be $\Omega(g(n))$ if we can find suitable constants c and n₀ so that cg(n) is an lower bound for t(n) for n beyond n₀
 - * $t(n) \ge cg(n)$ for every $n \ge n_0$

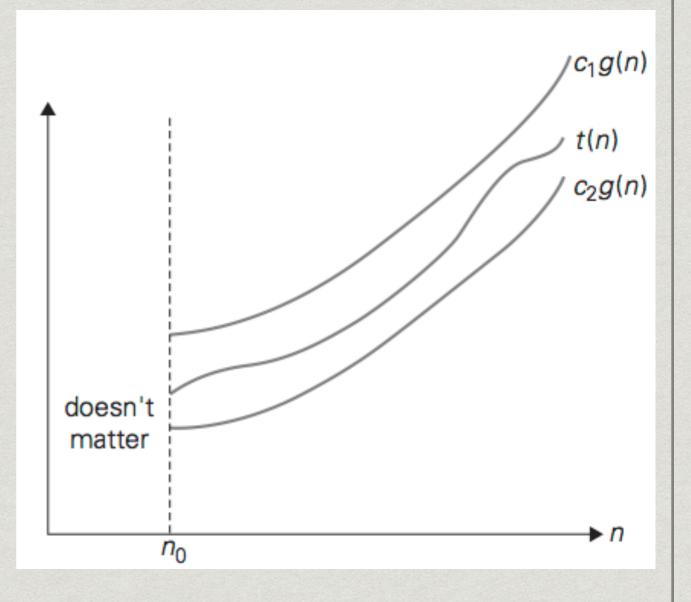


Lower bounds

- * n³ is Ω(n²)
 - * $n^3 \ge n^2$ for all n
 - * $n_0 = 0$ and c = 1
- Typically we establish lower bounds for problems as a whole, not for individual algorithms
 - * Sorting requires $\Omega(n \log n)$ comparisons, no matter how clever the algorithm is

Tight bounds, Θ (theta)

- ***** t(n) is $\Theta(g(n))$ if it is both O(g(n)) and $\Omega(g(n))$
- Find suitable constants c₁, c₂, and n₀ so that
 - * $c_2g(n) \le t(n) \le c_1g(n)$ for every $n \ge n_0$



Tight bounds

- * n(n-1)/2 is Θ(n²)
 - * Upper bound

 $n(n-1)/2 = n^2/2 - n/2 \le n^2/2$, for $n \ge 0$

* Lower bound

 $n(n-1)/2 = n^2/2 - n/2 \ge n^2/2 - (n/2 \ge n^2/4)$ for $n \ge 2$

* Choose $n_0 = max(0,2) = 2$, $c_1 = 1/2$ and $c_2 = 1/4$

Summary

- * f(n) = O(g(n)) means g(n) is an upper bound for f(n)
 - Useful to describe limit of worst case running time for an algorithm
- * $f(n) = \Omega(g(n))$ means g(n) is a lower bound for f(n)
 - Typically used for classes of problems, not individual algorithms
- * $f(n) = \Theta(g(n))$: matching upper and lower bounds
 - * Best possible algorithm has been found