
DESIGN AND ANALYSIS  
OF ALGORITHMS

MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE 
http://www.cmi.ac.in/~madhavan

NPTEL MOOC,JAN-FEB 2015 
Week 1, Module 7

http://www.cmi.ac.in/~madhavan


Comparing time efficiency

We measure time efficiency only upto an order of 
magnitude


Ignore constants


How do we compare functions with respect to 
orders of magnitude?



Upper bounds, “big O”
t(n) is said to be O(g(n)) if we can find suitable 
constants c and n0 so that cg(n) is an upper bound 
for t(n) for n 
beyond n0  

t(n) ≤ cg(n)  
for every n ≥ n0  

 

 

 

 



Examples: Big O
100n + 5 is O(n2)


100n + 5 

≤ 100n + n, for n ≥ 5 

= 101n ≤ 101n2, 	so n0 = 5, c = 101


Alternatively

100n + 5 

≤ 100n + 5n, for n ≥1 

= 105n ≤ 105n2,	 so n0 = 1, c = 105


n0 and c are not unique!


Of course, by the same argument, 100n+5 is also O(n)



Examples: Big O
100n2 + 20n + 5 is O(n2)


100n2 + 20n + 5

≤ 100n2 + 20n2 + 5n2, for n ≥ 1

≤ 125n2


n0 = 1, c = 125


What matters is the highest term

20n + 5 dominated by 100n2



Examples: Big O

n3 is not O(n2)

No matter what c we choose, cn2 will be 
dominated by n3 for n ≥ c



Useful properties

If 


f1(n) is O(g1(n))


f2(n) is O(g2(n))


then f1(n) + f2(n) is O(max(g1(n),g2(n)))



Proof
f1(n) ≤ c1g1(n) for all n > n1


f2(n) ≤ c2g2(n) for all n > n2 

 

 

 

 

 

 



Why is this important?

Algorithm has two phases

Phase A takes time O(gA(n))

Phase B takes time O(gB(n))


Algorithm as a whole takes time

max(O(gA(n)),O(gB(n)))


For an algorithm with many phases, least efficient 
phase is an upper bound for the whole algorithm



Lower bounds, Ω (omega)
t(n) is said to be Ω(g(n)) if we can find suitable 
constants c and n0 so that cg(n) is an lower bound 
for t(n) for n 
beyond n0  

t(n) ≥ cg(n)  
for every n ≥ n0  

 

 

 

 



Lower bounds
n3 is Ω(n2)


n3 ≥ n2 for all n


n0 = 0 and c = 1


Typically we establish lower bounds for problems 
as a whole, not for individual algorithms


Sorting requires Ω(n log n) comparisons, no 
matter how clever the algorithm is



Tight bounds, Θ (theta)
t(n) is Θ(g(n)) if it is both O(g(n)) and Ω(g(n))


Find suitable constants 
c1, c2, and n0 so that 

c2g(n) ≤ t(n) ≤ c1g(n)  
for every n ≥ n0  

 

 

 

 



Tight bounds
n(n-1)/2 is Θ(n2)


Upper bound 
 
n(n-1)/2 = n2/2 - n/2 ≤ n2/2, for n ≥ 0


Lower bound 
 
n(n-1)/2 = n2/2 - n/2 ≥ n2/2 - (n/2 x n/2) ≥ n2/4,  
for n ≥ 2


Choose n0 = max(0,2) = 2, c1 = 1/2 and c2 = 1/4



Summary
f(n) = O(g(n)) means g(n) is an upper bound for f(n)


Useful to describe limit of worst case running 
time for an algorithm


f(n) = Ω(g(n)) means g(n) is a lower bound for f(n)


Typically used for classes of problems, not 
individual algorithms


f(n) = Θ(g(n)): matching upper and lower bounds


Best possible algorithm has been found


