NPTEL MOOC,JAN-FEB 2015
Week 1, Module 7

DESIGN AND ANALYSIS
OF ALGORITHMS

MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE
http://www.cmi.ac.in/~madhavan



http://www.cmi.ac.in/~madhavan

Comparing time efficiency

* \\We measure time efficiency only upto an order of
magnitude

* |gnore constants

* How do we compare functions with respect to
orders of magnitude?




Upper bounds, “big O”

* t(n) is said to be O(g(n)) if we can find suitable
constants ¢ and no so that cg(n) is an upper bound
for t(n) for n
beyond no

A

* 1(n) < cg(n)
for every n = no

cg(n)

t(n)

>N




Examples: Big O

* 100n + 5 is O(n?)
* 100n + 5
* <100n +n,forn>=5
* =101n < 101n%, song=5, c = 101

* Alternatively
* 100n + 5
* < 100n + 5n, for n =1
* =105n <105n%, song=1,c=105

* Np and c are not unique!

* Of course, by the same argument, 100n+5 is also O(n)




Examples: Big O

* 100n? + 20n + 5 is O(n?)

* 100n% + 20n + 5

* <1000t 208-+ 58°,. forn = 1
* < 125n°?

* No=1 € =125

* \What matters is the highest term
* 20n + 5 dominated by 100n?




Examples: Big O

* n° is not O(n?)
* No matter what ¢ we choose, cn? will be
dominated by n3 forn > c




Useful properties

* |f
* f1(n) is O(g1(n))
* fo(n) is O(gz(n))

* then f1(n) + f2(n) is O(max(g1(n),gz(n)))




* f1(n) < c1g1(n) for all n > n1
* fo(n) < c202(n) for all n > no




Why is this important’/

* Algorithm has two phases
* Phase A takes time O(ga(n))
* Phase B takes time O(gs(n))

* Algorithm as a whole takes time
* max(O(ga(n)),0(gs(n)))

* For an algorithm with many phases, least efficient
phase is an upper bound for the whole algorithm




| ower bounds, €2 (omega)

* t(n) is said to be Q(g(n)) if we can find suitable
constants ¢ and ng so that cg(n) is an lower bound
for t(n) for n
beyond no

A
t(n)

cg(n)
* t(n) = cg(n)
for every n = no

doesn't |
matter

>N




L ower bounds

* n°is Q(n?)
* N3 >n?forall n
* np=0andc =1

* [ypically we establish lower bounds for problems
as a whole, not for individual algorithms

* Sorting requires €2(n log n) comparisons, no
matter how clever the algorithm is




Tight bounds, O (theta)

* t(n) is O(g(n)) if it is both O(g(n)) and S2(g(n))

¥ Find suitable constants
C1, C2, and ng so that N

c1g(n)

t(n)

cpg(n)

* c2g(n) < t(n) < c1g(n)
for every n = no

doesn't |
matter

» N




Tight bounds

* n(n-1)/2 is O(n?)
* Upper bound
n(n-1)/2 =n%/2 - n/2 < n®/2,forn =0

* Lower bound

n(n-1)/2 = n%/2 - n/2 = n?/2 - (n/2 x n/2) = n%/4,
forn=2

* Choose np = max(0,2)=2,c1=1/2and c> = 1/4




Summary

* f(n) = O(g(n)) means g(n) is an upper bound for f(n)

* Useful to describe limit of worst case running
time for an algorithm

* f(n) = Q(g(n)) means g(n) is a lower bound for f(n)

* [ypically used for classes of problems, not
individual algorithms

* f(n) = ©(g(n)): matching upper and lower bounds

* Best possible algorithm has been found




