NPTEL MOOC,JAN-FEB 2015
Week 1, Module 6

DESIGN AND ANALYSIS
OF ALGORITHMS

MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE
http://www.cmi.ac.in/~madhavan



http://www.cmi.ac.in/~madhavan

INput size

* Running time depends on input size
* Larger arrays will take longer to sort

* Measure time efficiency as function of input size
* [nput size n
* Running time t(n)

* Different inputs of size n may each take a different
amount of time

* Typically t(n) is worst case estimate




INnput size ...

* How do we fix input size?
* [ypically a natural parameter

* For sorting and other problems on arrays:
array size

* For combinatorial problems: number of objects

* For graphs, two parameters: number of vertices
and number of edges




INnput size ...

* |[nput size for numbers

* |[s naprime?
* \What should be the input size? Magnitude of n?
* Arithmetic operations are performed digit by digit

* Addition with carry, subtraction with borrow,
multiplication, long division ...

* Number of digits is input size

* Same as log, h when we write n in base b




Orders of magnitude

* \When comparing t(n) across problems, focus on
orders of magnitude

* |gnore constants

* f(n) = n® eventually grows faster than g(n) = 5000 n?
* For small values of n, f(n) is smaller than g(n)
* At n = 5000, f(n) overtakes g(n)

* \What happens in the limit, as n increases :
asymptotic complexity




Choice of basic operations

* Flexibility in identifying “basic operations”

* Swapping two variables involves three assignments
* tmp « X
X ey
y & ©mp

* Number of swaps is 3 times number of assignments

* |[f we ignore constants, t(n) is of the same order of
magnitude even if swapping values is treated as a
basic operation




Worst case complexity

* Running time on input of size n varies across
INnputs

* Search for K in an unsorted array A

< 0
while 1 < n and Al = KK-do
1 « 1+1

1f 1 < nh return 1
else return -1




Worst case complexity

* For each n, worst case input forces algorithm to take
the maximum amount of time

* |[f K not In A, search scans all elements
* Upper bound for the overall running time
* Here worst case is proportional to n for array size n

* (Can construct worst case inputs by examining the
algorithm




Average case complexity

* \Worst case may be very rare: pessimistic
* Compute average time taken over all inputs
* Difficult to compute

* Average over what?

* Are all inputs equally likely?

* Need probability distribution over inputs




Worst case vs average
case

* \Worst case can be unrealistic ...

* ... but average case is hard, if not impossible, to
compute

* A good worst case upper bound is useful

* A bad worst case upper bound may be less
informative

* Try to “classify” worst case inputs, look for
simpler subclasses




