
DESIGN AND ANALYSIS  
OF ALGORITHMS

MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE 
http://www.cmi.ac.in/~madhavan

NPTEL MOOC,JAN-FEB 2015 
Week 1, Module 6

http://www.cmi.ac.in/~madhavan


Input size
Running time depends on input size


Larger arrays will take longer to sort


Measure time efficiency as function of input size


Input size n


Running time t(n)


Different inputs of size n may each take a different 
amount of time


Typically t(n) is worst case estimate



Input size …

How do we fix input size?


Typically a natural parameter


For sorting and other problems on arrays: 
array size


For combinatorial problems: number of objects


For graphs, two parameters: number of vertices 
and number of edges



Input size …
Input size for numbers


Is n a prime?


What should be the input size? Magnitude of n?


Arithmetic operations are performed digit by digit


Addition with carry, subtraction with borrow, 
multiplication, long division …


Number of digits is input size


Same as logb n when we write n in base b



Orders of magnitude
When comparing t(n) across problems, focus on 
orders of magnitude


Ignore constants


f(n) = n3 eventually grows faster than g(n) = 5000 n2 


For small values of n, f(n) is smaller than g(n)


At n = 5000, f(n) overtakes g(n)


What happens in the limit, as n increases : 
asymptotic complexity



Choice of basic operations
Flexibility in identifying “basic operations” 

Swapping two variables involves three assignments

tmp ← x  
x ← y  
y ← tmp  

Number of swaps is 3 times number of assignments


If we ignore constants, t(n) is of the same order of 
magnitude even if swapping values is treated as a 
basic operation



Worst case complexity

Running time on input of size n varies across 
inputs


Search for K in an unsorted array A

	 	 i ← 0

while i < n and A[i] != K do
i ← i+1

if i < n return i
else return -1



Worst case complexity
For each n, worst case input forces algorithm to take 
the maximum amount of time


If K not in A, search scans all elements


Upper bound for the overall running time


Here worst case is proportional to n for array size n


Can construct worst case inputs by examining the 
algorithm



Average case complexity

Worst case may be very rare: pessimistic


Compute average time taken over all inputs


Difficult to compute 


Average over what?


Are all inputs equally likely? 


Need probability distribution over inputs



Worst case vs average 
case

Worst case can be unrealistic …


… but average case is hard, if not impossible, to 
compute


A good worst case upper bound is useful


A bad worst case upper bound may be less 
informative


Try to “classify” worst case inputs, look for 
simpler subclasses


