NPTEL MOOC,JAN-FEB 2015
Week 1, Module 4

DESIGN AND ANALYSIS
OF ALGORITHMS

MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE
http://www.cmi.ac.in/~madhavan



http://www.cmi.ac.in/~madhavan

Example 3: Document
similarity

* Given two documents, how similar are they?
* Plagiarism detection
* Checking changes between versions of code

* Answering web search queries more effectively




Document similarity ...

* \What is a good measure of similarity?
* Edit distance

* How many changes does one have to make to get
from one document to another?

* \What types of changes are allowed?
* Add or remove a letter

* Replace one letter by another




Document similarity ...

* Edit Distance

* Minimum number of edit operations to transform
one document to another

* How do we compute it?

* Brute force: try all sequences and choose the best
one

* Delete all of first document, add all of second
document

* |mpossibly inefficient!




Decomposing the problem

* Make the first character in both documents the
same

* Explore all possible edit operations that make
this possible

* Recursively fix the rest of the documents
* Naive recursion is inefficient

* Same subproblem solved recursively many times




Nalve recursion can be
inefficient

* Fibonacci numbers:
* F(n) = F(n-1) + F(n-2), F(1) =1, F(2) = 1
* Sequence is 1,1,2,3,5,8,13,21

* Computing recursively

* F(7) = F©) + F(5) = (F(5) + F(4)) + (F(4)+F(3))
(F(4)+F(3)+F(3)+F(2)) + (F(3)+F(2)+F(2)+F(1))




Dynamic Programming

* Making recursive computations efficient
* Ensure that subproblems are computed only once

* How do we store and look up answers to already
solved subproblems?




Variations

* |nterested only in the meaning of the document

* Focus on words

* Documents are near if they overlap on many words
* Order in which words occur may not matter
* Useful for topic based web search

* Can have dictionary of “similar” words




