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3.1 INTRODUCTION
The number of errors caused by data transmission is typically orders of magnitude
larger than the number of errors caused by hardware failures within a computer sys-
tem. The bit error probability for internal circuits is usually below 10 − 15. On an opti-
cal fiber link the average probability of errors is approximately 10 − 9. That is, on the
average, one in every 109 bits transmitted (or processed) is distorted, six orders of
magnitude more than for hardware circuits. Similarly, on a coaxial cable the proba-
bility of bit errors is approximately 10 − 6. For a switched telephone line, the numbers
are even higher, between 10 − 4 and 10 − 5.

The difference in magnitude between an error probability of 10 − 15 and one of 10 − 4

should not be underestimated. A bit error rate of 10 − 15 on a transmission line would
be immeasurably small at today’s transmission rates. At a rate of 9600 bits per
second, it would cause one single bit error every 3303 years of continuous operation.
At the same data rate, a bit error rate of 10 − 4 causes a bit error, on average, once a
second.

Depending on line and network characteristics, transmitted data may be reordered,
distorted, or deleted, and occasionally noisy lines may even insert new data into
transmissions. The errors introduced in data transmissions are, of course, not entirely
unpredictable or inexplicable. The errors have two main causes, discussed in more
detail in Appendix A:

Linear distortion of the original data, for instance, as caused by bandwidth lim-
itations of the raw data channel
Non-linear distortion that is caused by echoes, cross-talk, white noise, and
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impulse noise
The effect of these distortions can be remedied, to a certain extent, with cable insula-
tion and hardware compensation filters. The errors that remain must be caught in
software by the communications protocol.

There are several ways in which the error characteristics of a data line can be
expressed. The first, and most important, is the long-term average bit error rate. But,
since this is only an average, there are two other factors in use:

The percentage of time that the average bit error rate does not exceed a given
threshold value
The percentage of error-free seconds

The last two measures give an indication of the overall quality of a line or a network.
For the design of an error control method one commonly uses only the average bit
error rate, as an indication of the expected performance.

No error control method can be expected to catch all errors that can possibly occur.
We can, however, require that an error control scheme increase the reliability of the
transmissions, preferably to the level of reliability of the stand-alone operation of a
computer.

An often overlooked issue is that an effective error control scheme should match the
error characteristics of the channels to be used. If a channel only produces insertion
errors, it would be unwise to design a protocol that protects against deletions. Simi-
larly, if a channel produces independent, single-bit errors with a relatively low proba-
bility, even the simplest parity scheme (Section 3.6) can easily outperform the most
sophisticated error control methods. And, finally, if the error rate of the channel is
already lower than that of peripheral equipment, the inclusion of any error control
scheme needlessly degrades performance and may even turn out to decrease rather
than increase the protocol’s reliability.

3.2 ERROR MODEL
For a channel with a long-term average bit error rate of p, it is theoretically most con-
venient if we assume a random distribution of the errors over the sequence of bits
transmitted. The probability of n subsequent bit errors in a message is then simply
p n , and the probability of one or more bit errors in a message of n bits is 1 − ( 1 − p) n .
Though this ignores the effect of impulse noise, it gives us a good starting point for
the study of error control disciplines. The formal model for a channel of this type is
the discrete memoryless channel shown in Figure 3.1.

The channel is called discrete because it recognizes only a finite number of distinct
signal levels. It is called memoryless because the probability of an error is assumed to
be independent of all occurrences of previous errors. Since we have assumed that the
probability of a bit error is the same for both signal elements, the channel in Figure
3.1 is also called a symmetric channel.

Many different variations to this basic model are possible, accompanied by
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Figure 3.1 — Discrete Memoryless Channel
increasingly complex calculations to predict the effect of error control methods. In an
asymmetric channel, for instance, the probability of an error may depend on the signal
value being transmitted. The distribution of error probabilities can also be defined as
a process with memory: if the last n bits transmitted were in error it is very probable
that the next few will be wrong too. It is difficult to capture this behavior in a predic-
tive model. The error model provided by the binary symmetric channel predicts that
the probability of a series of at least n contiguous error-free bit transmissions, called
an ‘‘error-free interval’’ (EFI), is equal to

Pr(EFI≥n) = ( 1 − b) n, n≥0 (3.1)

where b is the long-term average bit error rate.

The probability decreases linearly with the length of the interval. Similarly, the pro-
bability that the duration of a burst exceeds n bits decreases linearly with n. To
express that the probability of an error-free interval decreases exponentially with its
duration, we can replace formula (3.1) with a Poisson distribution:

Pr(EFI≥n) = e− b(n − 1 ) , n ≥ 1 (3.2)

The best way to verify the accuracy of this prediction is, of course, to compare it
against empirical data. Such studies indicate indeed that formula (3.2) predicts error
free intervals better than (3.1). A still better match can be found if a correction factor
is added to (3.2). We thus obtain the following approximation, which is due to Benoit
Mandelbrot (see Bibliographic Notes):

Pr(EFI≥n) = 
n ( 1 − a) − (n − 1 )( 1 − a)

 e− b(n − 1 ) , 0≤a < 1 , n ≥ 1 (3.3)

The parameter a determines how serious the clustering effect is predicted to be.
When a is zero, formula (3.3) reduces to the Poisson distribution in (3.2). For non-
zero a, the probability of longer error-free intervals decreases more than the probabil-
ity of shorter intervals. With growing a this effect becomes more pronounced. Of
course, if the error characteristics are independent of the bit rate they can be expressed
in seconds.

With different parameter values a and b, functions of type (3.2) and (3.3) can be used
to predict both the duration of error-free intervals and the duration of bursts indepen-
dently. We will use this method in Chapter 7. For the remainder of this chapter,
however, we will restrict ourselves to the model of a binary symmetric channel.
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3.3 TYPES OF TRANSMISSION ERRORS
Many different types of errors can occur on data lines. The most important transmis-
sion errors show up as data

Insertion
Deletion
Duplication
Distortion
Reordering

Inserted and deleted data may be caused by the temporary loss of synchronization
between sender and receiver. Deletion errors may also be caused artificially by inade-
quate flow control disciplines. A receiver, for instance, may run out of buffers to hold
incoming messages and lose messages that it cannot store. Data duplication may even
be performed intentionally, for instance by a sender that implements a retransmission
protocol. If data are routed through networks, potentially via many different routes,
also data reordering may occur.

Data sequencing problems, such as deletion, duplication, and reordering, are solved
with proper flow control schemes (Chapter 4). But, in all cases where data distortion
or insertion can occur, no matter what the cause is, we need methods to verify the
consistency of the data. We discuss such methods below.

3.4 REDUNDANCY
An error detection method can only work by increasing the redundancy of messages
in some well-defined way. By checking the consistency of a message the receiver can
then assess the reliability of the information it contains. Apart from detecting
transmission errors, though, the receiver must also be able to correct the errors. There
are two ways in which this can be done:

Forward error control
Feedback error control

If the redundancy is made large enough the receiver may be able to reconstruct a mes-
sage from the distorted signal. This method is called forward error control. The
corresponding transmission codes are named error-correcting codes.

The alternative is to use an error-detecting code and arrange for the retransmission of
corrupted messages. This is called feedback error control. A retransmission request
can be an explicit negative acknowledgment sent from receiver to sender or, when the
probability of error is sufficiently low, it can be implicit in the absence of a positive
acknowledgment for correctly received data. In that case the receiver simply ignores
any corrupted data and waits for the sender to time out waiting for the acknowledg-
ment and retransmit the message.

The purpose of error control is to bring the channel error rate down. Not all errors can
be detected, so there is always a residual error rate. Assume that the probability of a
transmission error in a message is p and that the error control method catches a frac-
tion f of all errors. For a given f and p, we can then calculate the residual error rate
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p .( 1 − f ) and convince ourselves that it is, for instance, in the order of 10− 9 or less.

If probability p is very close to zero, an error-correcting code is generally ill-advised:
it merely slows down the data transfer. If, on the other hand, p approaches one, a
retransmission scheme would be a bad choice: almost every message, including the
retransmitted ones, would be hit. Of course there are exceptions to these rules. If p is
small, and the cost of retransmission high, a forward error control scheme may still be
profitable. In other cases still, a combination of forward and feedback error control
may be a good compromise: the receiver corrects frequently occurring errors and asks
the sender for the retransmission of messages that contain less frequent errors.

In the next section we first look at the main types of error-correcting and error-
detecting codes that have been developed.

3.5 TYPES OF CODES
The two basic types of codes are

Block codes
Convolution codes

In a block code all code words have the same length, and the encoding for each possi-
ble data message can be statically defined. In a convolution code the code word pro-
duced depends on both the data message itself and a given number of previously
encoded messages: the encoder changes its state with every message processed. The
length of the code words is usually constant. We can further distinguish between

Linear codes
Cyclic codes
Systematic codes

Linear and cyclic block codes are the most commonly used codes in data communica-
tion protocols. In a linear code every linear combination of valid code words (such as
a modulo-2 sum) produces another valid code word. A cyclic code is a code in which
every cyclic shift of a valid code word also produces a valid code word. A systematic
code, finally, is a code in which each code word includes the data bits from the origi-
nal message unaltered, either followed or preceded by a separate group of check bits.

In all cases the code words are longer than the data words on which they are based. If
the number of original bits is d and the number of additional bits is e, the ratio
d /(d + e) is called the code rate. Improving the quality of a code often means increas-
ing its redundancy and thus lowering the code rate. To reduce the channel error rate
by a factor of 5.102 by forward error control, for instance, may require a code with a
code rate of 0. 5 or less.

The remainder of this chapter is organized as follows. Section 3.6, gives a general
introduction to parity check codes. In Section 3.7, we extend the code into a forward
error control method. Section 3.8 discusses a simple linear block code, due to R.
Hamming, that offers protection against independent single bit errors. Section 3.9
focuses on cyclic block codes, using the popular cyclic redundancy check as an exam-
ple. Section 3.10 discusses a simple alternative to a cyclic redundancy check: the
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arithmetic checksum method.

3.6 PARITY CHECK
If the probability of multiple bit errors per message is sufficiently low, all the error
control needed on a binary symmetric channel is a parity check code. To every mes-
sage we add a single bit that makes the modulo-2 sum of the bits in that message
equal to one. The overhead is merely one bit per message. If any single bit, including
the check bit, is distorted by the channel the parity at the receiver comes out wrong
and the transmission error can be detected.

If we set q = 1 − p, the probability of an error-free transmission of n message bits plus
one parity bit is q (n + 1 ) , and the probability of a single bit error in n + 1 bits transmit-
ted is the binomial probability (n + 1 ) .p .q n . Under these assumptions (i.e., a
memoryless channel) the residual error rate of a one-bit parity check is

1 − q (n + 1 ) − (n + 1 ) .p .q n

For n = 15 and p = 10 − 4 this leaves a residual error rate on the order of 10 − 6 per mes-
sage, or about 10 − 7 per bit.
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Figure 3.2 — Residual Error Rate of a 1-bit Parity Check, n=15

The solid line in Figure 3.2a shows how the residual error rate per code word
increases as a function of the bit error rate p. The dotted line shows what the error
rate per code word would be without the parity check bit: 1 − q n . When p is suffi-
ciently small, therefore, the parity check code can indeed bring the error rate of the
channel down. The curve in Figure 3.2b shows the difference between the error rate
of the uncorrected and the corrected code. It reaches a maximum for p ∼− 0. 06.

3.7 ERROR CORRECTION
A forward error control scheme uses only a small subset of the available bit combina-
tions to encode messages. The codes are chosen such that it takes a relatively large
number of bit errors to convert one valid message into another. By mapping an
erroneous message onto the ‘‘closest’’ valid message in the coding scheme, a receiver
can try to correct for occasional transmission errors. The closest valid message in this
case is the message that differs from the code word received in the fewest number of
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bits.

The code rate of an error-correcting code is in general lower than that of a mere
error-detecting code. In principle, therefore, forward error correction is only con-
sidered to be useful when the communication of control messages from a receiver
back to a sender is difficult. The difficulty may be

A very long transmission delay
The absence of a return channel
A high bit-error rate

A good example of the first problem is the communication between a space probe and
its remote control center on earth. A control signal, for instance to release a camera
shutter or to make a course adjustment, may take several minutes to reach the distant
probe. There may not be enough time to repeat a signal in case of a transmission
error. The signal either gets through or is lost forever.

The second problem can exist in radio broadcast transmission systems with one
sender and multiple receivers. A more perverse, but very real, example is when
transmission sequences are stored on a backup-device and played back later. At the
time of transmission the original data may no longer be available for retransmission.

The third problem, a high bit error rate, may mean that even the probability that a
request for retransmission can be received correctly is unacceptably low. In all three
cases, adding redundancy to a message may be the only way to avoid the irrevocable
loss of some of the messages transmitted.

Even a single parity check per code word can be extended easily from a single-error
detecting code into a single-error correcting code. Every sequence of seven bits is
first extended with a single parity bit that makes the number of one bits in each
sequence even. The parity bit is called a longitudinal redundancy check, or LRC bit.
By adding an extra sequence of eight bits to every series of n codes, we can include a
vertical redundancy check, or VRC bit, for the set of bits that occupy the same bit
position in each sequence. For instance, with ASCII coding, for n = 4:

LRC
D = 1000100 0
A = 1000001 0
T = 1010100 1
A = 1000001 0

-------
0010000 1 VRC

A faulty VRC bit encodes the column number and a faulty LRC bit the corresponding
row number for an error bit so that any single bit error per series of 40 transmitted bits
can indeed be corrected. We have used 12 check bits to protect a sequence of 28 data
bits, which corresponds to a code rate of 28/( 12 + 28 ) = 0. 7.

Now, let us forget about parity checks and develop an error-correcting code from
scratch. The following example is based on J.H. van Lint [1971].
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EXAMPLE
Suppose we would like to standardize the generation of random numbers. The
method we choose is to appoint an impartial person to be our standard random
number generator. He performs this task by flipping a standard coin A times per
second. The results are transmitted to all four corners of the earth via a standard
binary symmetric channel that operates at a maximum speed of 2A bps (bits per
second), with a bit error rate of 2.10 − 2.

Clearly, the result of each flip of the standard coin can be encoded in one bit of infor-
mation. Transmitting the raw bits can be done at a rate of A bps, but causes the
receivers to get an average 2% of the numbers deviating from the ‘‘random stan-
dard.’’

The first thing we may come up with to solve this problem could be to transmit each
result not once but twice, that is we encode each result in two bits instead of one. The
receivers are now able to detect most transmission errors, but clearly there is no time
left to correct them. An error-correcting code is in order. We can now try to encode
two flips of the coin, as a pair, into four bits of data, using Table 3.1.

Table 3.1 — Coding
_ ______________ _____________
Result Code_ _____________

hh 0000
th 1001
ht 0111
tt 1110_ _____________ 








The receivers use a different table, shown as Table 3.2, that allow them to decode any
code word received as one of the four possible messages.

Table 3.2 — Decoding
_ ____________________________________ ___________________________________

Valid Codes Result_ ___________________________________
0000 1000 0100 0010 hh
1001 0001 1101 1011 th
0111 1111 0011 0101 ht
1110 0110 1010 1100 tt_ ___________________________________ 








The code is resistant to single bit errors in the first three bits of each code word sent.
The first column in Table 3.2 contains the original code word sent, and the next three
columns contain the codes that result after an error in the first, second, or third bit,
respectively. Multiple bit errors, or a single error in the fourth bit, still lead to the
reception of a non-standard random number. What are the odds that this happens? A
code is received correctly if, with probability q 4, it has no errors or, with probability
3p .q 3, it has exactly one error among the first three bits.
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q 4 + 3p .q 3 = 0. 9788

We started out with an error rate of 2% per single bit, that is a 4% chance of at least
one error in a series of two bits. The error rate is reduced to 1 − 0. 9788 = 0. 0212 or
2.12% for two subsequent bits. We used four bits to encode two flips, giving a code
rate of 0. 5. We wasted twelve out of sixteen possible code words to accomplish this
reduction in the error rate, but we are still transmitting the codes as fast as the results
are produced by our standard random number generator.

Without changing the effective signaling speed, or the code rate, we could boost the
amount of waste still further by using eight bits to encode series of four data bits. To
select the 24 valid code words needed from the range of 28 available we can again
attempt to reduce the possibility that one valid word is transformed into another by
transmission errors.

HAMMING DISTANCE
The difference between two code words can be defined as the number of bits in which
they differ. The minimum difference between two words in a code is called its
Hamming distance. If we succeed in finding a code with a Hamming distance of n,
any combination of up to n − 1 bit errors can be detected. Better still, any combina-
tion of up to (n − 1 )/2 errors per code word can be corrected if we tell the receiver to
interpret every nonvalid code word as the closest valid code word. The receiver will
guess wrong for higher numbers of bit errors, but if the probability of these is suffi-
ciently low the overall error rate of the channel may still be reduced.

Formally, this method is called maximum likelihood decoding, or also nearest
neighbor decoding. By increasing the Hamming distance, choosing longer and longer
code words, we should then be able to increase the reliability of a code as much as we
want.

The following question now comes up: is this true for any transmission rate and for
any channel? The answer can be found in a paper published by Claude Shannon in
1948, A Mathematical Theory of Communication. Assuming a bandwidth limited
channel with white noise, Shannon proved that only for transmission rates up to a cer-
tain limit can the error rate of the channel be made arbitrarily small (Appendix A).
The limit is called the channel capacity.

Shannon’s argument is based on the observation that the amount of information
transferred by a channel can never exceed the entropy of the information source nor
the entropy of the channel itself caused by noise. Below that limit it is theoretically
always possible to derive reliable information from the channel. Informally, Shannon
found that when the signal-to-noise ratio gets smaller, each signal must last longer to
make it stand out from the noise, which in turn reduces the maximum signaling speed
that can be obtained.

The effort required in coding the data, however, normally prohibits the operation of a
channel near the theoretical limit. For a telephone line, for instance, with a bandwidth
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of 3.1 kHz and a signal-to-noise ratio of 30 dB (that is, 8:1), the Shannon limit is
roughly 30 Kbit/sec, which is much more than the maximum rate used in practice.

3.8 A LINEAR BLOCK CODE
We saw in the last section that the redundancy of a code determines its power to
detect and correct transmission errors. The redundancy can be defined as the number
of bits used over the minimum required to encode a message unambiguously. To
encode one of n equally likely messages, for instance, requires log 2 n bits, rounded up
to the nearest integer value. We call this quantity m.

m =  log 2 n

We can protect these m bits by adding c check bits and choosing the n codes used
from the 2(m + c) codes now available in such a way that each combination of two valid
codes differs in as many bits as possible.

Table 3.3 — Parity Protection
_ __________________ _________________
c m m/(m+c)_ _________________
1 0 0.00
2 1 0.50
3 4 0.57
4 11 0.73
5 26 0.84
6 57 0.90
7 120 0.94
8 247 0.97_ _________________

To be able to correct all single bit errors, we know that we need a Hamming distance
of at least three between code words, but how many check bits will this minimally
cost? For every code word of m + c bits, there are precisely m + c codes that can result
from single bit errors. For every word from the range of 2m possible data codes,
therefore, we need m + c + 1 words to protect it against single bit errors. The total
number of words in the code then is (m + c + 1 ) .2m, which should be equal to the
2(m + c) words with which we started.
Setting

(m + c + 1 ) .2m = 2(m + c)

gives

m + c + 1 = 2c

allowing us to calculate the minimal number of check bits c for any given number of
data bits m. For m = 8, we find a minimum of c = 3. 66 or 4 check bits per message,
giving a code rate of 8/( 8 + 4 ) = 0. 66.
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Alternatively, we can find the maximum number of data bits m for a given number of
check bits c. The first eight numbers are listed in Table 3.3, with the corresponding
maximum code rates. The same effect is illustrated for up to 16 checkbits in Figure
3.3.

With good approximation, the number of data bits that can be protected goes up
exponentially with the number of check bits that are available.
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Figure 3.3 — Parity Protection

HAMMING CODE
An example of a code that realizes this protection is a code developed by R. Ham-
ming. In Hamming’s code, included as an example of a perfect single-error correcting
code in Shannon’s 1948 paper, the bits in a code word are numbered from 1 to m + c.
The i-th check bit is placed at the bit position 2i for 1 ≤ i ≤ log 2 (m + c).

The check bits have been placed in the code word in such a way that the sum of the
bit positions they occupy points at the erroneous bit for any single bit error. To catch
a single bit error the check bits are used as parity bits.

When a bit position is written as a sum of powers of two, for example, (1 + 2 + 4), it
also points at the check bits that cover it. Data bit 7 = ( 1 + 2 + 4 ), for instance, is
counted in the three check bits at positions 1, 2, and 4. A single bit error that changes
the seventh data bit changes the parity of precisely these three checks. The receiver
can therefore indeed determine which bit is in error by summing the bit positions of
all check bits that flagged a parity error. An error that changes, for instance, the
second bit only affects that single bit and can also be corrected.
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Figure 3.4 — Correction of a Transmission Error

As an example, the ASCII character code for the letter D is 1000100. Figure 3.4
shows how the data and parity bits are placed in a Hamming code. If a transmission
error changes bit position 7 from a 0 into a 1 the code arrives as the ASCII code for an
L 1001100. But, the first three parity bits transmitted now differ from the values the
receiver can calculate and reveal the faulty seventh bit.

It is of course not really relevant to the code as such in what order the code bits are
placed in a code word. By rearranging the bits, for instance, every binary Hamming
code can be changed into a systematic code or into a cyclic code.

MATRIX REPRESENTATION
There is a convenient method to define the linear block parity check codes in matrix
form. As an example, consider a code with three data bits, named D1, D2, and D3,
and three check bits, C4, C5, and C6. We can define the three check bits as the
modulo-2 sum of the data bits, for instance as follows:

C4 = D1 + D2
C5 = D1 + D3
C6 = D2 + D3

These three functions can be defined in matrix form as follows:



 C 6
C 5
C 4 




=


 0
1
1

1
0
1

1
1
0 






 D 3
D 2
D 1 




Taking this one step further, we can also express the three defining functions as fol-
lows:

D1 + D2 + + C4 = 0
D1 + + D3 + C5 = 0

D2 + D3 + C6 = 0
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which leads to the following matrix representation.



 0
1
1

1
0
1

1
1
0

0
0
1

0
1
0

1
0
0 




. Ct =


 0
0
0 




In this formula, Ct is the transpose of the data word, written as a vector of bits.
According to the definition, the matrix multiplication must produce a zero vector.
Note that the right side of the matrix is a unit submatrix, with ones only on the diago-
nal. The matrix can always be written in this form by grouping all the check bits on
the right side of the defining formulas.

H .Ct = 0

H is called a parity check matrix. Transmission errors can be formalized as an error
vector E that is added to the code word. When the receiver performs the check now,
it may find a non-zero result s.

H .( Ct + E) = s

The vector s is called a syndrome. In this code every modulo-2 sum of valid code
words produces another valid code word. Therefore, if the error vector E happens to
match any valid code word, the syndrome is zero and the error goes undetected.

BURSTS
Until now we have focused mainly on the detection and correction of single bit
transmission errors, assuming that errors would be mutually independent. In practice,
we know that transmission errors are not mutually independent: they tend to come in
bursts.

Noise spikes, echoes, and cross-talk all affect series of subsequent bits whenever they
occur. For a switched telephone line the average probability of a bit error may be
10 − 5. But, if one bit in an arbitrary message has been distorted the probability that
the next bit is also wrong can be as high as 0. 5. The result is that relatively few mes-
sages are distorted overall, but the ones that are distorted are more seriously hurt.
Clearly, it is rather pointless to develop an error control scheme that can flawlessly
detect and correct a rare single bit error if the burst errors are more common.

Though the definition of the Hamming code is relatively simple, it is surprisingly hard
to extend it into a code that can correct multiple bit errors per word. To guarantee the
detection of even numbers of bit errors per code word the Hamming code can be
extended with a single longitudinal parity check. A more general solution, however,
is more difficult.

CODE INTERLEAVING
A general method to counter burst errors is code interleaving, One interleaving
method is to change the order in which bits are transmitted across the channel.

Assume we have messages of n bits each, protected against single bit errors.
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Assuming further that traffic is non-interactive, we can intercept burst errors up to a
length of k bits by buffering each block of k subsequent messages, placing them in a
matrix of k×n bits and transmitting the bits in this matrix column by column instead
of row by row. At the receiver end the original matrix is restored column by column
and read row by row. A burst error of length k or less then only causes a single bit
error per row and can be corrected properly.

True double-error correcting codes, not based on interleaving schemes, were first pub-
lished by Hocquenghem [1959], and Bose and Ray-Chaudhuri [1960]. These codes,
collectively known as BCH codes, require substantially more theoretical justification
than can be given here. A further generalization of the BCH codes is known as the
Reed-Solomon code. It has found application, for instance, in the digital encoding of
sound on compact disks.

In a study performed at IBM in 1964, it was found that in almost all cases feedback
error control can be superior to forward error control in both throughput and in resi-
dual error rates. We therefore continue with a discussion of a cyclic block code that is
used for feedback error control.

3.9 CYCLIC REDUNDANCY CHECKS
The cyclic redundancy check, or CRC, method is also based on the addition of series
of check bits to code words. In this case the added bits guarantee that, in the absence
of transmission errors, the code word plus check bits is divisible by a given factor.
The specific division method and the factor used determine the range of transmission
errors that can be detected. To simplify the algebraic manipulation of code words we
can define a mapping of codes onto polynomials. A sequence of N bits can then be
interpreted as a polynomial of maximum degree N − 1:

i = 0
Σ

N − 1

b i
.x i

where each b i takes the value of the bit in position i in the sequence, with bits num-
bered right to left. The code word 10011, for instance, defines polynomial

x 4 + x + 1

We are working in a binary system so all operations, including division and multipli-
cation, are defined modulo-2. Modulo-2 addition is defined as follows:

0 + 0 = 0 - 0 = 0

0 + 1 = 0 - 1 = 1

1 + 0 = 1 - 0 = 1

1 + 1 = 1 - 1 = 0

In longer additions there is no carry, and in subtractions there is no borrow. In poly-
nomial form, therefore, for any i we have x i + x i = 0, since both 1 + 1 = 0 and
0 + 0 = 0. To multiply two code words, we can multiply the corresponding polynomi-
als.



SECTION 3.9 CYCLIC REDUNDANCY CHECKS 57

Table 3.4 — A Cyclic Code
_ _________________________________________________________________ ________________________________________________________________
Data Word Polynomial Multiplied By Produces Code Word_ ________________________________________________________________
0 0 0 0 x + 1 0 0 0 0 0

0 0 1 1 x + 1 x + 1 0 0 1 1

0 1 0 x x + 1 x 2 + x 0 1 1 0

0 1 1 x + 1 x + 1 x 2 + 1 0 1 0 1

1 0 0 x 2 x + 1 x 3 + x 2 1 1 0 0

1 0 1 x 2 + 1 x + 1 x 3 + x 2 + x + 1 1 1 1 1

1 1 0 x 2 + x x + 1 x 3 + x 1 0 1 0

1 1 1 x 2 + x + 1 x + 1 x 3 + 1 1 0 0 1_ ________________________________________________________________ 

























For example,

(x 4 + x + 1 ) × (x 3 + x 2 ) = x 7 + x 6 + x 4 + x 2

We can use this mechanism easily to define a code. Consider, for instance, a code
with three data bits. We encode the data in four bits by multiplying every data word
with the polynomial x + 1, as shown in Table 3.4. The resulting code is a parity check
code with a code rate of 3/4. It is also a cyclic code, but not a systematic one.

If we can add, subtract and multiply polynomials, we can of course also divide them.
Let us try dividing the polynomial x 7 + x 6 + x 3 + x 4 + x 2 by a factor x 5 + x 2 + 1.

x 5 + x 2 + 1 / x 7 + x 6 + x 4 + x 3 + x 2 \ x 2 + x

x 6 + 0 + x 3
x 7 + 0 + x 4 + 0 + x 2
_ ________________

x
x 6 + 0 + x 3 + x_ ____________

To make the original polynomial divisible by factor x 5 + x 2 + 1, we could simply sub-
tract the residual x from it. But, although the receiver would then be able to detect
transmission errors, it would not be able to recover the original message from the
code word. Better is to append the residual as a checksum. The factor used to gen-
erate a checksum is called the generator polynomial of the code.

We now first multiply the message polynomial by a factor equal to the highest degree
of the generator polynomial, in this case x 5, to make room for the checksum. It sim-
ply means shifting the bits in the code word five places to the left. Then we divide the
message polynomial by the generator polynomial and subtract the residual.

Since the CRC is a linear code, every error pattern E must be equal to some valid code
word T. For a known code this property can be used to calculate the residual error
rate. If P is the message polynomial and G a generator polynomial of degree r, the
residual R has degree r − 1 and is defined to be the remainder of

G
P .xr
_ ____
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The code word T to be transmitted is

T = P .xr − R

A transmission error in effect adds an error polynomial E to the transmitted code.
When the receiver divides the code by the generator polynomial it finds the error term

G
T + E_ ____ =

G
T_ __ +

G
E_ __ =

G
E_ __

A transmission error is only undetected if the remainder of the division of the error
pattern E by the generator polynomial G is zero. If E is nonzero and of a lower degree
than G, the division always leaves a remainder. This means that all burst errors of
length r and less are detected perfectly. Note carefully that this is independent of the
position of the burst within the code word T. The error pattern E cannot turn into a
multiple of G simply by multiplication with a factor x i (assuming, of course, that G is
not equal to x i).

Longer burst errors only go undetected if the error pattern E is an integer factor times
the generator polynomial. If we assume random error patterns, the probability of this
can easily be calculated. With n + r code bits transmitted, there are a total of 2n + r

possible error patterns. The number of integer multiples of a generator polynomial of
degree r in a code word of length n + r is equal to 2n . Each multiple can be con-
sidered as a finite sum of n factors, where each factor is obtained by a left shift of the
generator polynomial into the data word. The generator can be shifted left by n bit
positions. Each of these n factors is either present or absent in the final multiple, giv-
ing 2n possible multiples. This means that a fraction

2n + r
2n

_ ____ =
2r
1_ __

of all random errors are missed. For r = 16, this corresponds to 10 − 5 of all error pat-
terns.

STANDARDIZED GENERATOR POLYNOMIALS
The problem of designing a cyclic redundancy check code is clearly to find generator
polynomials that trap the largest class of transmission errors. One such polynomial is
known as CRC-12:

x 12 + x 11 + x 3 + x 2 + 1

It generates a 12-bit checksum.

The CCITT has recommended the following generator polynomial for 16-bit check-
sums, usually referred to as CRC-CCITT:

x 16 + x 12 + x 5 + 1

The highest degree of the polynomial is sixteen so this code detects all burst errors up
to 16 bits in length. In modulo-2 arithmetic, this polynomial can also be written as
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follows:

(x + 1 ) × (x 15 + x 14 + x 13 + x 12 + x 4 + x 3 + x 2 + x + 1 )

Now, it is easy to see that any polynomial multiplied by the factor x + 1 must have an
even number of terms (that is, non-zero bits). This means that any E with an odd
number of terms, produced by any odd number of single bit transmission errors, is not
divisible by x + 1, and can be detected. For this reason most standard generator poly-
nomials have at least a factor x + 1. The CCITT polynomial can also be shown to trap
all double bit errors, 99.997% of burst errors of 17 bits, and 99.998% of all burst
errors longer than 17 bits.

Another frequently used generator polynomial is the one used in IBM’s Bisync proto-
col, known as CRC-16 (which also has the factor x + 1):

x 16 + x 15 + x 2 + 1

There is also a 32-bit checksum polynomial, CRC-32, defined by an IEEE standards
committee (IEEE-802):

x 32 + x 26 + x 23 + x 22 + x 16 + x 12 + x 11 + x 10 + x 8 + x 7 + x 5 + x 4 + x 2 + x + 1

THE ANSI FDDI STANDARD
The 32-bit checksum CRC-32 is also the polynomial used in the Fiber Distributed
Data Interface (FDDI) standard, defined by ANSI in 1986. In the FDDI standard,
though, the calculation of the checksum is somewhat different from the standard
method explained above. The calculation is as follows. Let p be the degree of the
message polynomial P, and let L be a polynomial representing a sequence of 32 bits,
all with value one. The checksum is calculated as the complement of the remainder of

G
(L .xp + P) .x 32
_ ______________

First the pattern L is prepended to the code word. The resulting word is shifted left by
32 bits to make room for the checksum. The checksum is then calculated as before
and complemented before transmission. The complement can be obtained in
modulo-2 arithmetic by adding the pattern L to the remainder. Since the resulting
checksum is obviously different from the earlier

G
P .x 32
_ _____

a division of the transmitted code word T by the generator polynomial G no longer
yields zero in the absence of errors. To perform the check, the FDDI receiver does a
different calculation. Let M be the code word as it is received, that is,

M = T + E

The receiver now checks that the remainder of the division
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G
(L .xp + M) .x 32
_ ______________

equals

G
L .x 32
_ _____

that is, it must equal the pattern L that was added to the checksum at the FDDI sender
to invert it before the transmission. The addition of the pattern L and the inversion of
the checksum guarantee, among other things, that a transmitted code word never con-
sists of only zero bits.

EFFICIENCY
The encoding and decoding of CRC checksums can be a time consuming task that
may degrade the performance of a protocol. The implementation is therefore typically
done either in hardware with shift registers or in software with lookup tables storing
precomputed values for parts of the CRC sum.

The following C program, by Don Mitchell of AT&T Bell Laboratories, generates a
lookup table for an arbitrary checksum polynomial. Input for the routine is an octal
number, specified as an argument, that encodes the generator polynomial. In the ver-
sion of the program shown here, compliments of Ned W. Rhodes, Software Systems
Group, bits are numbered from zero to r − 1, with bit zero corresponding to the right-
most bit, and r the degree of the generator polynomial. (In Mitchell’s original algo-
rithm the bits in the message and generator polynomial were reversed.) The r-th bit
itself is omitted from the code word, since it is implicit in the length.

Using this program takes two separate steps. First, the program is compiled and run
to generate the lookup tables. Then the checksum generation routine can be com-
piled, with the precalculated lookup tables in place. On a UNIX system, the genera-
tor program is compiled as

$ cc -o crc_init crc_init.c

Lookup tables for the two most popular CRC-polynomials can now be produced as
follows:

$ crc_init 0100005 > crc_16.h
$ crc_init 010041 > crc_ccitt.h

This is the text of crc_init.c:

main(argc, argv)
int argc; char *argv[];

{
unsigned long crc, poly;
int n, i;

sscanf(argv[1], "%lo", &poly);
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if (poly & 0xffff0000)
{ fprintf(stderr, "polynomial is too large\n");

exit(1);
}

printf("/*\n * CRC 0%o\n */\n", poly);
printf("static unsigned short crc_table[256] = {\n");
for (n = 0; n < 256; n++)
{ if (n % 8 == 0) printf(" ");

crc = n << 8;
for (i = 0; i < 8; i++)
{ if (crc & 0x8000)

crc = (crc << 1) ˆ poly;
else

crc <<= 1;
crc &= 0xFFFF;

}
if (n == 255) printf("0x%04X ", crc);
else printf("0x%04X, ", crc);
if (n % 8 == 7) printf("\n");

}
exit(0);

}

The table can now be used to generate checksums:

unsigned short
cksum(s, n)

register unsigned char *s;
register int n;

{
register unsigned short crc=0;

while (n-- > 0)
crc = crc_table[(crc>>8 ˆ *s++) & 0xff] ˆ (crc<<8);

return crc;
}

The CRC checksum, using a lookup table with the algorithm shown above, is com-
puted in approximately 1.1 msec of CPU time (for a 512-bit message, when running
on a DEC/VAX-750). For comparison, the following is the checksum routine from
the UNIX system uucp code.

cksum(s,n)
register char *s;
register n;

{
register short sum;
register unsigned short t;
register short x;
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sum = -1;
x = 0;

do {
if (sum<0) {

sum <<= 1;
sum++;

} else
sum <<= 1;

t = sum;
sum += (unsigned)*s++ & 0377;
x += sumˆn;
if ((unsigned short)sum <= t) {

sum ˆ= x;
}

} while (--n > 0);

return(sum);
}

The method is a simple and somewhat ad hoc hashing scheme. It takes slightly more
CPU time for a checksum computation (1.8 msec per call), yet the protection it pro-
vides against transmission errors is smaller than that of the cyclic redundancy check.
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Figure 3.5 — Comparison of Checksumming Methods
Uucp Checksum, solid; CRC-16 Checksum, dashed

The data for Figure 3.5 were obtained by randomly distorting 164,864 messages of
512 bits each. In a first test (shown in Figure 3.5a) independent single bit errors were
introduced. In a second test (Figure 3.5b) burst errors were simulated. Checksums
were calculated for both the distorted and the undistorted messages. A distorted mes-
sage was accepted only if its checksum was the same as for the undistorted message.

The CRC-16 catches all odd numbers of bit errors and properly rejects all burst errors
up to 16 bits. The two methods have a comparable performance only for even
numbers of single bit errors and for burst errors longer than 16 bits long (not shown).
In all other cases the CRC-16 method is superior.
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3.10 ARITHMETIC CHECKSUM
Each checksumming method has an overhead in bits that is expressed as its code rate.
It also has a hidden overhead in the CPU-time that is required to calculate the check-
sum bits, which erodes the maximum transmission rate. The time requirements can
be reduced by using lookup tables, as shown above, or by developing special purpose
hardware for the checksum calculation. In applications where the requirements for
the residual error rate do not justify a CRC implementation, it can be attractive to find
a simple alternative that can still provide serious error protection.

A very interesting method of this type was published by John Fletcher in 1982. The
checksum in Fletcher’s algorithm requires only addition and modulo operations and is
trivially simple. Here is the code of a version that has been adopted for the ISO Class
4 transport protocol standard (TP4).

unsigned short
cksum(s, n)

register unsigned char *s;
register int n;

{
register int c0=0, c1=0;
do {

c0 = (c0 + *s++)%255;
c1 = (c0 + c1)%255;

} while (--n > 0);
return (unsigned short) (c1<<8+c0);

}

It is remarkably simple, yet it turns out to have a respectable error detection capabil-
ity. Figure 3.6 compares the performance of Fletcher’s algorithm with that of the
uucp checksum.
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Figure 3.6 — Comparison of Checksumming Methods
Uucp Checksum, solid; Arithmetic Checksum, dashed

Given the simplicity of the algorithm, the return in error detection capability is cer-
tainly worthwhile.
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3.11 SUMMARY
One functional module in the protocol hierarchy is error control. The inclusion of an
error control scheme can and should be transparent to the rest of the protocol. Its
function is to transform a channel with error rate p into one with a lower (residual)
error rate p .( 1 − f ), where f is the fraction of the errors that is intercepted by the error
code.

An error control scheme requires overhead that is measured by the number of redun-
dant bits that are added to each code word. Redundancy is rarely equal to protection
(see Exercise 3-1), but a small amount of redundancy is a prerequisite to any error
control scheme.

With proper encoding and at the price of lower transfer rates, the receiver can use an
error-correcting code to recover from the characteristic errors introduced by the chan-
nel. With lower overhead an acceptable performance can be achieved with error-
detecting codes that rely on flow control schemes for the retransmission of distorted
data. Flow control schemes are studied in Chapter 4.

The adequacy of an error control scheme, however, can only be assessed properly
when the error characteristics of the transmission channel, the required transfer rate
(i.e., code rate), and the required level for the residual error rate are known.

EXERCISES

3-1. 3-1. A phone company recently considered running new 56 Kbit/sec data lines at an end-to-
end data rate of 9600 bits/sec, using the extra bandwidth to enhance reliability. The
method chosen was to transmit each single byte five times in succession. By a majority
vote, comparing the five successive bytes and choosing the most frequent one from each
set, the receiver would then decide which byte had been transmitted. Comment on the
code rate and the protection against burst errors.

3-2. 3-2. A simple error control scheme has the receiver retransmit all the messages it receives
back to the sender. Each message then has to survive two successive transmissions to be
accepted. Try to build a protocol that works this way.

3-3. 3-3. The protocol of Exercise 3-2 is modified to have the receiver merely return a CRC check-
sum field to the sender by way of acknowledgment. The checksum is returned for every
message received, distorted or not, and is used by the sender to decide upon retransmis-
sion. Comment upon this improvement.

3-4. 3-4. (Jon Bentley) The two sentences ‘‘the dog runs’’ and ‘‘the dogs run’’ are both valid in
English. The sentences ‘‘the dogs runs’’ and ‘‘the dog run’’ are both invalid. Would this
classify English grammar as a feedback or as a forward error control method?

3-5. 3-5. The message 101011000110 is protected by a CRC checksum that was generated with
the polynomial x 6 + x 4 + x + 1. The checksum is in the tail (the right side) of the
message. (a) How many bits is the checksum? (b) If no transmission errors occurred,
what would the original data be? (c) Were there any transmission errors?

3-6. 3-6. List the circumstances under which an error-correcting code with a code rate of 0.1 can
be more attractive than an error-detecting code with feedback error control? Consider
error rates and roundtrip message propagation delays.
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3-7. 3-7. Another method to adapt a single error-correcting code for protection against burst errors
is to use n error codes for a sequence of n messages, where the i-th code word covers
only the i-th bit from each message. To protect against burst errors of up to k bits this
method attempts to separate the bits that make up one new ‘‘code word,’’ spanning n
messages, by more than k bit positions. Work out the details of this method and apply it
to a sample message.

3-8. 3-8. CRC checksum polynomials that contain the factor x + 1 catch all odd numbers of bit
errors. Think of a method to catch all even numbers of bit errors as well, for instance, by
deliberately introducing a bit error in a second transmission, and comment upon this
scheme. Consider the code rate as well.

3-9. 3-9. How would you classify Fletcher’s algorithm? (See Section 3.4)
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