
IEEE Transactions on CAD 1986

Decision Diagrams as “if-else” Normal Form

An “if-else” ternary operator: x  y1,y0

x  y1,y0 = (x . y1 + x’ . y0)

If-else Normal Form (INF):
 A boolean expression built entirely from
 constants 1 and 0, positive literals, and if-else operator

Existence of INF for arbitrary boolean expression?

Guaranteed by Shannon Expansion:
 f(x,…) = (x’ . f|x=0) + (x . f|x=1)
 t[x,…] = x  t[1/x], t[0/x]

How to make them CANNONICAL:
 Unique Normal Form?

x + x’y

(x  1, (y  1,0)) (y  (x  0, 1), (x  1,0))

How to compress Decision Diagrams?

You get Cannonicity,
 not compactness

Rule-2

Rule-1

Henceforth, we assume we are dealing only with ROBDDs
 and refer to them as just BDDs

Main BDD Theorem

Cannonicity Thm: Fix an arbitrary variable order,
 then BDD for every boolean function is unique

Shannon Expansion: f(x,…) = (x’ . f|x=0) + (x . f|x=1)

Proof: By induction on the number (n) of vars in boolean function

Base Case: n =0, i.e., constant function

Induction Case:
 Assume unique BDDs exist for functions on n variables
 Can use rules of reduction to add n+1 var in shannon-order
 in a unique fashion: How?

Challenge: Finding a variable order that makes the BDD most compact

Some useful observations/facts about BDDs

P1: Variables always occur in the variable ordering on every path

P2: Every path from root to terminal 1 is a SAT assignment

P3: Every node represents a unique boolean function
• A restriction on original function
• A boolean function on a subset of variables

P4a: Every Valid formu1a is identical to 1
P4b: Every UNSAT formulas is identical to BDD 0,
P4c: A formula is SAT if it is not BDD 0

What’s the catch???

Impact of Variable Ordering

(a1. b1) + (a2 . b2) + (a3 . b3)

a1 <b1 <a2 < b2 < a3 <b3 a1 < a2 < a3 <b1 < b2 < b3

BDD Size Bounds for Some Classes of Functions

Courtesy: [Bryant, R., ACM Computing Surveys, 1992]

A Time Efficient Algorithm to Construct BDDs?

Given
 1. (x1 ↔ y1) (x2 ↔ y2)
 2. x1 < y1 < x2 < y2

??

Requirements:
 1. Suitable data structures for BDDs
 2. Apply operations, e.g., negation, +, etc.,
 on two existing BDDs

Data Structures for BDD

Nodes are uniquely numbered 0,1,2,3….
 (with 0,1 denoting terminals)

Variables are numbered 1,2,3…n (as per chosen ordering),
 (with terminals assigned n+1)

(i,l,h) u

(1,5,6) 7

(2,4,0) 5

(4,0,1) 3

(5,*,*) 1

(2,0,4) 6

(3,2,3) 4

(4,1,0) 2

(5,$,$) 0

H: (i,l,h)  u
Lookup Table Node Table

$ $
* *

Data Structures for BDD

(i,l,h) u

(1,5,6) 7

(2,4,0) 5

(4,0,1) 3

(5,*,*) 1

(2,0,4) 6

(3,2,3) 4

(4,1,0) 2

(5,$,$) 0

Node Table

H: (i,l,h)  u
Lookup Table

Index creation for tables can be implemented
 as “hash” functions
 s.t. basic operations can be done
 in constant time

MK: Adding a node to BDD structure

1. Line 1: checks for redundancy
2. Line 2: A node is added to the table only if it doesn’t exist
  unique BDD in graph for every boolean function
3. Both T and H tables are updated

A Time Efficient Algorithm to Construct BDDs?

Given
 1. (x1 ↔ y1) (x2 ↔ y2)
 2. x1 < y1 < x2 < y2

??

Requirements:
 1. Suitable data structures for BDDs
 2. Apply operations, e.g., negation, +, etc.,
 on two existing BDDs

Recursion Recap

fact(n)
 if n = 0 then return 1
 else result  (n * fact (n-1))
 return result
end fact

fib (n)
 if n <=1 then return 1
 else result  (fib(n-1) * fib(n-2))
 return result
end fib

fibo(n)
 save_result[0] = 1; save_result[1] = 1
 function fib_alt(n)
 if save_result(n) = defined then result  save_result(n)
 else result  (fib(n-1) * fib(n-2))
 save_result(n)  result
 return result
 end fib_alt

 return fib_alt(0)
end fibo

Build: Bottom-up BDD construction

Basis for the recursive algorithm:
 Shannon Expansion:
 f(x,…) = (x’ . f|x=0) + (x . f|x=1)
 t[x,…] = x  t[1/x], t[0/x]

Not efficient:
 Ο() recursive calls ,
 n = #vars

Binary Operations on BDDs
(For top-down efficient construction)

(x1 ↔ y1).(x2 ↔ y2) x1 . y2’

Some illustrative examples of BDD ops

1. x + x’

2. x + 0

3. x + y’

t op (x1  s1, s2) ≡ (x1  t op s1, t op s2)
(x1  s1, s2) op t ≡ (x1  s1 op t, s2 op t)

(x -> t1, t2) op (x  s1, s2)
≡ (x  t1 op s1, t2 op s2)

Laws of if-else operator that form basis for above manipulation:

Apply: Binary operation on two BDDs

Now compute BDD for (x1 ↔ x2) + x2’ using APPLY!!

= 4!

= 1!

Original BDDs

3  (2,0,1)

5  (1,3,4)

Optimized version of Apply

Time complexity: Ο(|u1| * |u2|)

Restrict operation Illustration

f(x1, x2, x3) = (x1 ↔ x2) + x3

BDD for f(1, x2, x3)?

BDD for f(x1, 0, x3)?

Steps for computing BDD for Restriction:

1. Look for the nodes associated with variable x
2. Eliminate the nodes directing all incoming
 edges towards b-edge of the eliminated node

Apply(+, Restrict(1/x, f), Restrict(0/x, f))

BDD: Summary

• DAG representation of boolean functions
– Every boolean function has a unique RO-BDD
– sat,unsat, and even equivalence checking are

constant time
• Efficient manipulation algorithms for

operations
• Need to find good orderings for compactness
• Widely used in commercial EDA tools for

verification and synthesis, especially in
hardware design

