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Decision Diagrams as “if-else” Normal Form 

An “if-else” ternary operator:       x   y1,y0 

x   y1,y0   = (x . y1  + x’ . y0) 

If-else Normal Form (INF):   
   A boolean expression built entirely from  
     constants 1 and 0, positive literals, and if-else operator  

Existence of INF for arbitrary boolean expression? 
 
Guaranteed by Shannon Expansion: 
                                  f(x,…) = (x’ . f|x=0)  + (x . f|x=1)  
                                  t[x,…]  = x    t[1/x], t[0/x] 



How to make them CANNONICAL:  
                                                 Unique Normal Form? 

x  + x’y 

(x  1, (y  1,0)) (y  (x  0, 1), (x  1,0)) 

How to compress Decision Diagrams? 



You get Cannonicity, 
     not compactness 









Rule-2 

Rule-1 



Henceforth, we assume we are dealing only with ROBDDs 
         and refer to them as just BDDs 



Main BDD Theorem 

Cannonicity Thm:  Fix an arbitrary variable order, 
    then BDD for every boolean function is unique 

Shannon Expansion:   f(x,…) = (x’ . f|x=0)  + (x . f|x=1)          

Proof: By induction on the number (n) of vars in boolean function 

Base Case:  n =0, i.e., constant function 

Induction Case:  
         Assume unique BDDs exist for functions on n variables 
         Can use rules of reduction to add n+1 var in shannon-order 
              in a unique fashion: How? 

Challenge: Finding a variable order that makes the BDD most compact 



Some useful observations/facts  about BDDs 

P1: Variables always occur in the variable ordering on every path 

P2: Every path from root to terminal 1 is a SAT assignment 

P3: Every node represents a unique boolean function 
•   A restriction on original function 
•   A boolean function on a subset of variables 

P4a:     Every Valid formu1a is identical to 1 
P4b:     Every UNSAT formulas is identical to BDD 0, 
P4c:     A formula is SAT if it is not BDD 0 



  

What’s the catch??? 







Impact of Variable Ordering 

(a1. b1) + (a2 . b2) + (a3 . b3) 

a1 <b1 <a2 < b2 < a3 <b3 a1  < a2 < a3 <b1 < b2 < b3 



BDD Size Bounds for Some Classes of Functions 

Courtesy: [Bryant, R., ACM Computing Surveys, 1992] 





A Time Efficient Algorithm to Construct BDDs? 

Given 
   1. (x1 ↔ y1) (x2 ↔ y2) 
   2. x1 < y1 < x2 < y2 

?? 

Requirements: 
  1. Suitable data structures for BDDs 
  2. Apply operations, e.g., negation, +, etc., 
      on two existing BDDs 



Data Structures for BDD 

Nodes are uniquely numbered 0,1,2,3….  
       (with 0,1 denoting terminals) 

Variables are numbered 1,2,3…n (as per chosen ordering),  
        (with terminals assigned n+1) 

(i,l,h) u 

(1,5,6) 7 

(2,4,0) 5 

(4,0,1) 3 

(5,*,*) 1 

(2,0,4) 6 

(3,2,3) 4 

(4,1,0) 2 

(5,$,$) 0 

    

H: (i,l,h)  u 
Lookup Table Node Table 

$ $ 
* * 



Data Structures for BDD 

(i,l,h) u 

(1,5,6) 7 

(2,4,0) 5 

(4,0,1) 3 

(5,*,*) 1 

(2,0,4) 6 

(3,2,3) 4 

(4,1,0) 2 

(5,$,$) 0 

    

Node Table 

H: (i,l,h)  u 
Lookup Table 

Index creation for  tables can be implemented 
    as “hash” functions 
     s.t. basic operations can be done 
                                       in constant time 



MK: Adding a node to BDD structure 

1. Line 1: checks for redundancy  
2. Line 2: A node is added to the table only if it doesn’t exist 
         unique BDD in graph for every boolean function 
3. Both T and H tables are updated 



A Time Efficient Algorithm to Construct BDDs? 

Given 
   1. (x1 ↔ y1) (x2 ↔ y2) 
   2. x1 < y1 < x2 < y2 

?? 

Requirements: 
  1. Suitable data structures for BDDs 
  2. Apply operations, e.g., negation, +, etc., 
      on two existing BDDs 



Recursion Recap 

fact(n) 
  if n = 0 then return 1 
  else result  (n * fact (n-1)) 
  return result 
end fact 

fib (n) 
  if n <=1 then return 1 
  else result  (fib(n-1) * fib(n-2)) 
  return result 
end fib 

fibo(n) 
  save_result[0] = 1; save_result[1] = 1 
  function fib_alt(n) 
     if save_result(n) = defined then result  save_result(n) 
     else result  (fib(n-1) * fib(n-2)) 
     save_result(n)  result 
     return result 
   end fib_alt 
  
 return fib_alt(0) 
end fibo 



Build: Bottom-up BDD construction 

Basis for the recursive algorithm:  
     Shannon Expansion: 
           f(x,…) = (x’ . f|x=0)  + (x . f|x=1)  
           t[x,…]  = x    t[1/x], t[0/x] 

Not efficient:   
   Ο(      ) recursive calls , 
                                  n = #vars 



Binary Operations on BDDs 
(For top-down efficient construction) 

(x1 ↔  y1).(x2 ↔  y2)  x1 . y2’ 



Some illustrative examples of BDD ops 

1.          x    +     x’ 

2.          x     +     0 

3.         x     +     y’ 

t  op  (x1  s1, s2)  ≡  (x1  t op s1, t op s2) 
(x1  s1, s2)  op t   ≡  (x1  s1 op t, s2 op t) 

(x -> t1, t2) op (x  s1, s2) 
≡  (x  t1 op s1, t2 op s2) 

Laws of if-else operator that form basis for above manipulation: 



Apply: Binary operation on two BDDs 



Now compute BDD for  (x1 ↔ x2) + x2’ using APPLY!! 



= 4! 

= 1! 



Original  BDDs 

3  (2,0,1) 

5  (1,3,4) 



Optimized version of Apply 

Time complexity: Ο(|u1| * |u2|)   



Restrict operation Illustration 

f(x1, x2, x3) = (x1 ↔ x2) + x3 

BDD for f(1, x2, x3)?  

BDD for f(x1, 0, x3)? 

Steps for computing BDD for Restriction: 
 
1. Look for the nodes associated with variable x 
2.  Eliminate the nodes directing all incoming  
        edges towards b-edge of the eliminated node 



Apply(+, Restrict(1/x, f), Restrict(0/x, f)) 



BDD: Summary 

•  DAG representation of boolean functions 
– Every boolean function has a unique RO-BDD 
– sat,unsat, and even equivalence checking are 

constant time 
• Efficient manipulation algorithms for 

operations 
• Need to find good orderings for compactness 
• Widely used in commercial EDA tools for 

verification and synthesis, especially in 
hardware design 


