Decision Procedures An Algorithmic Point of View

Gaussian Elimination and Simplex

Daniel Kroening and Ofer Strichman

Gaussian's elimination

Given a linear system Ax = b

Manipulate A|b to an upper-triangular form

$$\begin{bmatrix} a'_{11} & a'_{12} & \dots & a'_{1k} & b'_1 \\ 0 & a'_{22} & \dots & a'_{2k} & b'_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & a'_{kk} & b'_k \end{bmatrix}$$

Gaussian's elimination

Then, solve backwards from the k' s row according to:

$$x_{i} = \frac{1}{a'_{ii}} (b'_{i} - \sum_{j=i+1}^{k} a'_{ij} x_{j})$$

Gaussian elimination - example

$$\begin{pmatrix} 1 & 2 & 1 \\ -2 & 3 & 4 \\ 4 & -1 & -8 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 6 \\ 3 \\ 9 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 2 & 1 & | & 6 \\ -2 & 3 & 4 & | & 3 \\ 4 & -1 & -8 & | & 9 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 1 & | & 6 \\ -2 & 3 & 4 & | & 3 \\ 0 & -9 & -12 & | & -15 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \quad R3 + = -4R1$$
$$\begin{pmatrix} 1 & 2 & 1 & | & 6 \\ 0 & 7 & 6 & | & 15 \\ 0 & -9 & -12 & | & -15 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \quad R2 + = 2R1$$
$$\begin{pmatrix} 1 & 2 & 1 & | & 6 \\ 0 & 7 & 6 & | & 15 \\ 0 & 0 & -\frac{30}{7} & | & \frac{30}{7} \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \quad R3 + = \frac{9}{7}R2$$

And now... $x_3 = -1$, $x_2 = 3$, $x_1 = 1$ problem solved.

Feasibility with Simplex

Simplex was originally designed for solving the optimization problem:

$$\max \vec{c} \, \vec{x}$$

s.t.
$$A\vec{x} \le \vec{b}, \quad \vec{x} \ge \vec{0}$$

• We are only interested in the feasibility problem.

Is this system feasible ?

Is this system optimal?

General simplex

- We will learn a variant called general simplex.
- Very suitable for solving the feasibility problem fast.
 The input: Ax ≤ b
 - □ A is a $m \times n$ coefficient matrix □ The problem variables: $\vec{x} = x_1, \dots, x_n$

First step: convert the input to general form

General form

• General form:
$$A\vec{x} = 0$$
 and $\bigwedge_{i=1}^{m} l_i \le s_i \le u_i$

200

• A combination of:

 \Box Linear equalities of the form $\sum_i a_i x_i = 0$

 \Box Lower and upper bounds on variables.

Converting to General Form

• A: Replace $\sum_i a_i x_i \bowtie b_j$ (where $\bowtie \in \{=, \leq, \geq\}$)

with
$$\sum_i a_i x_i - s_j = 0$$

and $s_j \bowtie b_j$

• s_1, \ldots, s_m are called the additional variables.

• Convert $x + y \ge 2$

to:
$$x + y - s_1 = 0$$

 $s_1 \ge 2$
It is common to keep
the conjunctions
implicit

Convert

to:

Simplex basics...

Linear inequality constraints, geometrically, define a convex polyhedron.

[©] Wikipedia

Our example from before, geometrically

Matrix form

Recall the general form: Ax = 0 and A is an m × (n + m) matrix.

$$\bigwedge_{i=1}^{m} l_i \le s_i \le u_i$$

m

The tableau

• The diagonal part is inherent to the general form

• We can instead write:

The tableau

The tableau changes throughout the algorithm, but maintains its m × n structure

Distinguish between basic and nonbasic variables
 Initially, basic variables = the additional variables.

The tableau

Denote by

- $\square \mathcal{B}$ Basic variables
- $\square \mathcal{N}$ -Nonbasic variables
- The tableau is simply a rewrite of the system:

$$\bigwedge_{x_i \in \mathcal{B}} \left(x_i = \sum_{x_j \in \mathcal{N}} a_{ij} x_j \right)$$

The basic variables are also called the dependent variables.

The general simplex algorithm

Simplex maintains:

 \Box The tableau,

 \Box an assignment α to all variables

 \Box The bounds

Initially,

- $\square \mathcal{B} =$ additional variables
- $\square \mathcal{N} =$ problem variables
- $\square \ \alpha(x_i) = 0 \text{ for } i \in \{1, \dots, n+m\}$

Invariants

- Two invariants are maintained throughout:
- 1. $A\vec{x} = 0$

- 2. All nonbasic variables satisfy their bounds
 - Can you see why these invariants are maintained initially ?
 - We should check that they are indeed maintained

The general simplex algorithm

- The initial assignment satisfies $A\vec{x} = 0$
- If the bounds of all basic variables are satisfied by α , return `Satisfiable'.

• Otherwise... pivot.

Pivoting

- Find a basic variable x_i that violates its bounds. □ Suppose that $\alpha(x_i) < l_i$
- Find a nonbasic variable x_j such that

 □ a_{ij} > 0 and α(x_j) < u_j, or
 □ a_{ij} < 0 and α(x_j) > l_j

 Why ?

Pivoting

- Find a basic variable x_i that violates its bounds. □ Suppose that $\alpha(x_i) < l_i$
- Find a nonbasic variable x_j such that $\Box a_{ij} > 0$ and $\alpha(x_j) < u_j$, or $\Box a_{ij} < 0$ and $\alpha(x_j) > l_j$
- Such a variable x_j is called suitable.
- If there is no suitable variable return 'Unsatisfiable'
 - \Box Why ?

Pivoting x_i with x_j

• Solve equation i for x_j :

From:
$$x_i = a_{ij}x_j + \sum_{k \neq j} a_{ik}x_k$$

To:
$$x_j = \frac{x_i}{a_{ij}} - \sum_{k \neq j} \frac{a_{ik}}{a_{ij}} x_k$$

Swap x_i and x_j , and update the *i*-th row accordingly.

From a_{i1} ... a_{ij} ... a_{in} To: $-a_{i1}$... $\frac{1}{a_{ij}}$... $\frac{1}{a_{ij}}$... $\frac{-a_{in}}{a_{ij}}$

Pivoting x_i with x_j

Update all other rows:

 \Box Replace x_j with its equivalent obtained from row *i*:

$$x_j = \frac{x_i}{a_{ij}} - \sum_{k \neq j} \frac{a_{ik}}{a_{ij}} x_k$$

Pivoting

- Update α as follows:
- Increase $\alpha(x_j)$ by $\theta = \frac{l_i \alpha(x_i)}{a_{ij}}$ □ Now x_j is a basic variable: it can violate its bounds.

• Update $\alpha(x_i)$ accordingly \Box Q: What is now $\alpha(x_i)$?

• Update α for all other basic (dependent) variables.

Recall the tableau and constraints in our example:

Initially α assigns 0 to all variables
Bounds of s₁ and s₃ are violated

Recall the tableau and constraints in our example:

	x	y	2	<	
	1				
	2				
s_3	-1	2	_	_	

- We will solve s_1
- x is a suitable nonbasic variable for pivoting
 It has no upper bound
- So now we pivot s_1 with x

Recall the tableau and constraints in our example:

Solve 1st row for x: s₁ = x + y ⇔ x = s₁ - y
Replace x with s₁ in other rows:

$$s_2 = 2(s_1 - y) - y \iff s_2 = 2s_1 - 3y$$

 $s_3 = -(s_1 - y) + 2y \iff s_3 = -s_1 + 3y$

• The new state:

Solve 1st row for x: s₁ = x + y ⇔ x = s₁ - y
Replace x with s₁ in other rows:

$$s_2 = 2(s_1 - y) - y \iff s_2 = 2s_1 - 3y$$

 $s_3 = -(s_1 - y) + 2y \iff s_3 = -s_1 + 3y$

The new state:

- What about the assignment ?
- We should increase x by $\theta = \frac{2-0}{1} = 2$ \Box Hence, $\alpha(x) = 0 + 2 = 2$

□ Now s_1 is equal to its lower bound: $\alpha(s_1) = 2$ □ Update all the others

■ The new state:

	$ s_1 $	11	α	(x)	=	2			
			$=$ α	(y)	=	0	2	\leq	s_1
	1		$- \alpha($	(s_1)	=	2	0	\leq	s_2
s_2	2	-3		$s_2)$				\leq	_
s_3	-1	3		(s_3)			-	_	÷0

- Now s_3 violates its lower bound
- Which nonbasic variable is suitable for pivoting ?

 That's right... y

■ The new state:

• We should increase y by $\theta = \frac{1 - (-2)}{3} = 1$

■ The final state:

All constraints are now satisfied

Observations

The additional variables:

- \Box Only additional variables have bounds.
- \Box These bounds are permanent.
- □ Additional variables exit the base only on extreme points (their lower or upper bounds).
- □ When entering the base, they shift towards the other bound and possibly cross it (violate it).

Observations

- Can it be that we pivot(x_i,x_j) and then pivot(x_j,x_i) and enter a (local) cycle ?
 - \Box No.
 - \Box For example, suppose that $a_{ij} > 0$.
 - \Box We increased $\alpha(x_j)$ so now $\alpha(x_i) = l_i$.
 - \Box After pivoting, possibly $\alpha(x_j) > u_j$
 - \Box But a_{ij} ' = 1 / a_{ij} > 0, hence x_i is not suitable.

Observations

- Is termination guaranteed ?
- Not obvious.
 - \Box Perhaps there are bigger cycles.
- In order to avoid circles, we use Bland's rule:
 - \Box determine a total order on the variables.
 - □ Choose the first basic variable that violates its bounds, and first nonbasic suitable variable for pivoting.
 - □ It can be proven that this guarantees that no base is repeated, which implies termination.

General-Simplex with Bland's rule

1. Transform the system into the general form

$$A\vec{x} = 0$$
 and $\bigwedge_{i=1}^{m} l_i \le s_i \le u_i$.

- 2. Set \mathcal{B} to be the set of additional variables s_1, \ldots, s_m .
- 3. Construct the tableau for A.
- 4. Determine a fixed order on the variables.
- 5. If there is no basic variable that violates its bounds, return "Satisfiable". Otherwise, let x_i be the first basic variable in the order that violates its bounds.
- 6. Search for the first suitable nonbasic variable x_j in the order for pivoting with x_i . If there is no such variable, return "Unsatisfiable".
- 7. Perform the pivot operation on x_i and x_j .
- 8. Go to step 5.